Radiative-convective heating of martian space vehicles
Three dimensional numerical simulation data on radiative aerothermodynamics of Martian entry probes Pathfinder, Exomars and Mars Science Laboratory (MSL) are presented and analyzed. It is shown that integral radiative heating of leeward surface of the entry probes exceeds corresponding convective heating. Review of previously published works dedicated to investigation of convective and radiative heating of space vehicles in Martian and Venus atmosphere as well as the description of used in the given paper calculation model are presented.
Radiative gas dynamics, re-entry space vehicles, Mars
Приведена и анализируется вычислительная модель радиационной аэротермодинамики марсианских космических аппаратов (КА) Pathfinder, Exomars и Mars Science Laboratory (MSL). Показано, что интегральный радиационный нагрев подветренной поверхности указанных спускаемых аппаратов превосходит соответствующий конвективный нагрев и составляет величину порядка нескольких Вт/см2. Представлен обзор работ, посвященных проблеме аэротермодинамики космических аппаратов, предназначенных для исследования Марса и Венеры.
1. Shang J.S., Surzhikov S.T. Nonequilibrium radiative hypersonic flow simulation. Progress in Aerospace Sciences. 2012. Vol. 53. pp.46−65. 2. Martin J. Atmospheric reentry. An Introduction to its Science and Engineering. Prentice-Hall, Inc., Englewood Cliffs N.J. 1962. 3. Gruszczynski J.S., Warren W.R., Jr. Experimental Heat- Transfer Studies of Hypervelocity Flight in Planetary Atmospheres. AIAA J. 1964, Vol.2. No. 9. pp.1542−1550. 4. James C.S. Experimental Study of Radiative Transport from Hot Gases Simulating in Composition the Atmospheres of Mars and Venus. AIAA J. 1964, Vol.2. No. 3. pp.470-475. 5. Faibairn A.R. Spectrum of Shock-Heated Gases Simulating the Venus Atmosphere. AIAA J. 1964, Vol.2. No. 6. pp.1004−1007. 6. Thomas G.M., Menard W.A. Experimental Measurements of Nonequilibrium and Equilibrium Radiation from Planetary Atmospheres. AIAA J. 1966. Vol.4. No.2. pp.227-237. 7. Freeman G.N., Oliver C.C. High-Temperature Thermodynamic and Transport Properties of Planetary CO2-N2 Atmospheres. AIAA J. 1970. Vol.8. No.9. pp.1687−1693. 8. Kirk D.B., Intrieri P.F., Seiff A. Aerodynamic Behaviour of the Viking Entry Vehicle: Ground Test and Flight Results. J. Spacecraft. 1978. Vol.15. No.4. pp.208-212. 9. Chen Y.K., Henline W.D., Stewart D.A., Candler G.V. Navier- Stokes Solutions with Surface Catalysis for Martian Atmosphere Entry. JSR. 1993. Vol.30. No.1 pp.32−42. 10. Tauber M.E., Yang L., Paterson J. Flat Surface Heat- Transfer Correlations for Martian Entry. JSR. 1993. Vol.30. No.2. pp.164−169. 11. Park,C., Nonequilibrium Hypersonic Aerothermo-dynamics. Willey-Interscience Publication, J. Wiley & Sons. New- York, 1990. 12. Tauber M., Sutton K. Stagnation-Point Radiative Heating Relations for Earth and Mars Entries. J. Spacecraft. 1991. Vol.28. No.1. pp.40−42. 13. Hassan B., Candler G., Olynick D. Thermo-Chemical Nonequilibrium Effects on the Aerothermodynamics of Aerobraking Vehicles. JSR. 1993. Vol.30. No.6. pp.647−655. 14. Tauber M., Palmer G., Earth Atmospheric Entry Studies for Manned Mars Mission. JTHT. 1992. Vol.6. No.2. pp.193−199. 15. Chen Y.K., Henline W.D., Tauber M.E. Mart Pathfinder Trajectory Based Heating and Ablation Calculations. JSR. 1995. Vol.32. No.2. pp.225−230. 16. Hartung L. Development of a Nonequilibrium Radiative Heating Prediction Method for Coupled Flowfield Solutions. JTHT. 1992. Vol.6. No.6. pp.618−625. 17. Park C., Yoon S. Fully Coupled Implicit Method for Thermochemical Nonequilibrium Air at Suborbital Flight Speeds. J. Spacecraft. 1992. Vol. 28. No.1. pp.31−39. 18. Henline W., Tauber M. Trajectory-Based Heating Analysis for the European Space Agency/Rosetta Earth Return Vehicle. JSR. 1994. Vol.31. No.3. pp.421−428. 19. Greendyke R., Gnoffo P., Wes Lawrence R. Calculated Electron Number Density Profiles for Aeroassist Flight Experiment. JSR. 1992. Vol.29. No.5. pp.621−626. 20. Gnoffo P., Price J., Braun R. Computation of Near-Wake, Aerobrake Flowfields. JSR. 1992. Vol.29. No.2. pp.182−189. 21. Gupta R., Lee K., Moss J., Sutton K. Viscous Shock-Layer Solution with Coupled Radiation and Ablation for Earth Entry. JSR. 1992. Vol.29. No.2. pp.173−181. 22. Walter R. Recent Advances in Computational Analysis of Hypersonic Vehicles. Combustion, Explosion, and Shock Waves. 1993. Vol.29. No.3. pp.316−319. 23. Mitcheltree R.A., Gnoffo P.A. Wake Flow About the Mart Pathfinder Entry Vehicle. Journal of Spacecraft and Rockets. 1995. Vol.32. No.5. pp.771−775. 24. Milos F.S., Chen Y.K., Gongdon W.M. et al. Mars Pathfinder Entry Temperature Data, Aerothermal Heating, and Heatshield Material Response. JSR. 1999. Vol.36. No.3. pp.380−391. 25. Paterna D., Monti R., et al. Experimental and numerical investigation of martian atmosphere entry. JSR. 2002. V. 39, N. 2. pp.227−236. 26. Edquist K.T. Afterbody Heating Predictions for a Mars Science Laboratory Entry Vehicle. AIAA paper 2005-4817, 2005, 12 p. 27. Bose D., Wright M. Uncertainty Analysis of Laminar Aeroheating Predictions for Mars Entries. AIAA paper 2005- 4682. 2005. 11 p. 28. Hollis B.R., Collier A.S. Turbulent Aeroheating Testing of Mars Science Laboratory Entry Vehicle in Perfect-Gas Nitrogen. AIAA Paper 2007-1208. 2007. 20 p. 29. Hollis B.R., Collier A.S. Turbulent Aeroheating Testing of Mars Science Laboratory Entry Vehicle. JSR. 2008. Vol. 45. No.3. pp.417−427. 30. Grinstead J.H., Wright M.J., Bogdanoff D.W., Allen G.A. Shock Radiation Measurements for Mars Aerocapture Radiation Heating Analysis. JTHT. 2009. Vol.23. No.2. pp.249−255. 31. Surzhikov S., Omaly P. MSRO convective and radiative heating. AIAA Paper 08-1274. 2008. 43 p. 32. Surzhikov S.T., Omaly P. Radiative Gas Dynamics of Martian Space Vehicles. AIAA paper 2011- 0452. 2011. p.28. 33. Surzhikov S.T. Comparative Analysis of Radiative Aerothermodynamics of Martian Entry Probes. AIAA paper 2012-2867. 2012. p. 38. 34. Gromov V.G., Surzhikov S.T., Charbonnier J.-M. Convective and Radiative Heating of a Martian Space Vehicle Base Surface. 4th European Symp. on Aerothermodynamics for Space Vehicles. Capua, Italy. ESA SP-487. 2002. pp. 265− 269. 35. Surzhikov S.T. 2D CFD/RGD Model of Space Vehicles. Proc. of the Int. Workshop on Radiation of High Temperature Gases in Atmospheric Entry. October 2003, Lisbon, Portugal. European Space Agency, SP-533, 2003, pp.95−102. 36. Surzhikov S.T. TC3: Convective and Radiative Heating of MSRO For Simplest Kinetic Models. Proc. HTGR Workshop ESA SP-583. 2005. pp.55−62. 37. Surzhikov S.T. TC3: Convective and Radiative Heating of MSRO, Predicted by Different Kinetic Models. Proc. 2nd HTGR Workshop. ESA SP-629. 2006. (CD-ROM). 38. Surzhikov S.T. Three-Dimensional Computer Model of Nonequilibrium Aerophysics of the Spacecraft Entering in the Martian Atmosphere. Fluid Dynamics. 2011. Vol. 46. No.3. pp.490−403. 39. Surzhikov S.T. Random models of Atomic Lines for Calculation of Radiative Heat Transfer in Laser Supported Waves. AIAA paper 97-2367. 1997. 11 p. 40. Surzhikov S.T. Computing System for Mathematical Simulation of Selective Radiation Transfer. AIAA paper 00- 2369. 2000. 15 p. 41. Gurvich L.V., Veitc I.V., Medvedev V.A. et al. Thermodynamic Properties of Individual Substances. HandBook. Vols.1-4. Moscow: Nauka. 1978. 42. Surzhikov S.T. The Effect of Non-Equilibrium Dissociation on Radiative Heating of Entering Space Vehicle. AIAA paper 2012-0146. 21 p. 43. Bird R., Stewart W., Lightfoot E. Transport Phenomena. John Wiley & Sons. Inc. 1965. 44. Wilke C.R. Diffusional Properties of Multicomponent Gases. Chem. Engn. Progr. 1950. Vol.46. pp.95−104. 45. Svehla R.A. Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures. NASA TR-R-132. 1962. 26 P. 46. Surzhikov S., Omaly P. Radiative Gasdynamics of Exomars at Angle of Attack. Proc. of the 4th European HTGR Workshop. 12-15 October. Lausanne, Switzerland. Available on CD and www-page of European Space Agency. 47. Surzhikov S.T., Shang J.S. Radiative Aerothermodynamics of Entry Probes in Martian and Earth Atmospheres. 7th European Aerothermodynamics Symposium on Space Vehicles. 9-12 May 2011. Bruges, Belgium. 8 p. 48. Surzhikov S.T. Convective and Radiative Heating of Martian Space Vehicles. 4th European Conference for Aerospace Sciences (EUCASS). 2011. 8 p. (Proceedings on CD). 49. Chatwood F.M., Gnoffo P.A. User’s Manual for the Langley Aerothermodynamic Upwind Algorithm (LAURA). NASA TM-4674, Apr. 1996. 50. Park C., Howe J.T., Jaffe R.L. and Candler G.V. Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries. J. of Thermophysics and Heat Transfer. 1994. Vol.8, No.1, pp.9−23. 51. Суржиков С.Т. Тепловое излучение газов и плазмы. М.: Изд-во МГТУ им. Н.Э.Баумана. 2004. 543 с. 52. Суржиков С.Т. Двумерная радиационно-газодинами- ческая модель аэрофизики спускаемых космических ап- паратов. В кн.: Актуальные проблемы механики. Меха- ника жидкости, газа и плазмы. - М.: Наука. 2008. С.20−59. 53. Суржиков С.Т. Трехмерная радиационно-газодинами- ческая модель аэрофизики спускаемых космических ап- паратов. В кн.: Актуальные проблемы механики. Физи- ко-химическая механика жидкостей и газов. - М.: Наука. 2010. С. 25−124. 54. Суржиков С.Т. Расчет обтекания модели кос- мического аппарата MSRO с использованием кодов NERAT-2D и NERAT-3D // Физико-химическая кинети- ка в газовой динамике. 2010. T.9. http://www.chemphys.edu.ru/pdf/2010-01-12-003.pdf 55. Суржиков С.Т. Трехмерная вычислительная модель аэротермодинамики спускаемых космических аппаратов // Физико-химическая кинетика в газовой динамике. 2010. T.9. http://www.chemphys.edu.ru/pdf/2010-01-12- 002.pdf