Диффузия в ионных жидкостях. Исследование методом классической молекулярной динамики



Diffusion in ionic liquids. Classical molecular dynamic study

In this paper we investigate the diffusion processes in two ionic liquids: 1-buthyl-3-methylimidazolium tetrafluoroborate and N, N, N-triethyl-N-methylammonium tetrafluoroborate. We discuss different methods for calculating the diffusion coefficients using molecular dynamics method. Two ways of estimating the statistical errors of simulation results were presented and compared. We discuss the stochastic properties of the system and the way they can be used to calculate the diffusion coefficients. Anomalous diffusivity in discussed ionic liquids is considered.

molecular modeling, ionic liquids, material science, diffusion, anomalous diffusion, supercapacitors, electrolytes

Глебс Ивановскис, Генри Эдгарович Норман, В. В. Стегайлов, Динара Равилевна Усманова

Том 14, выпуск 2, 2013 год



В данной работе исследуются процессы диффузии в двух ионных жидкостях: тетрафторборате 1-бутил-3-метилимидазолии и тетрафторборате N-метил-N,N,N-триэтиламмония. Обсуждаются различные способы вычисления коэффициентов диффузии с помощью молекулярной динамики. Опробованы два способа оценки статистических погрешностей результатов моделирования, проведено их сравнение. Обсуждаются стохастические свойства системы и возможность их использования для вычисления коэффициентов диффузии. Показан аномальный характер диффузии в рассмотренных ионных жидкостях.

молекулярное моделирование, ионные жидкости, материаловедение, диффузия, аномальная диффузия, суперконденсаторы, электролиты

Глебс Ивановскис, Генри Эдгарович Норман, В. В. Стегайлов, Динара Равилевна Усманова

Том 14, выпуск 2, 2013 год



1. E.W. Castner, J.F. Wishart. Spotlight on ionic liquids. J.
Chem. Phys., 132(12):120901, 2010.
2. H. Hamaguchi, R. Ozawa. Structure of Ionic Liquids and
Ionic Liquid Compounds: Are Ionic Liquids Genuine Liquids
in the Conventional Sense? Adv. Chem. Phys., 131:85-104,
2005.
3. P. Walden. Molecular weights and electrical conductivity of
several fused salts. Bull. Acad. Imper. Sci. (St. Petersburg),
pages 405-422, 1914.
4. G. M. Arantes, M.C.C. Ribeiro. A microscopic view of substitution
reactions solvated by ionic liquids. J. Chem. Phys.,
128(11):114503, 2008.
5. R.M. Lynden-Bell. Redox potentials and screening in ionic
liquids: effects of sizes and shapes of solute ions. J. Chem.
Phys., 129(20):204503, 2008.
6. G. Giraud, C. M. Gordon, I. R. Dunkin, K. Wynne. The effects
of anion and cation substitution on the ultrafast solvent
dynamics of ionic liquids: A time-resolved optical Kerreffect
spectroscopic study. J. Chem. Phys., 119(1):464, 2003.
7. C. Hardacre, J.D. Holbrey, M. Nieuwenhuyzen, T.G.A.
Youngs. Structure and solvation in ionic liquids. Acc. Chem.
Res., 40(11):1146-55, 2007.
8. M.N. Kobrak. A comparative study of solvation dynamics in
room-temperature ionic liquids. J. Chem. Phys.,
127(18):184507, 2007.
9. C. Chen. A functionalised ionic liquid: 1-(3-chloro-2-
hydroxypropyl)-3-methyl imidazolium chloride. Physics and
Chemistry of Liquids, 48(3):298-306, 2010.
10. M.V. Fedorov, A.A. Kornyshev. Ionic liquid near a charged
wall: structure and capacitance of electrical double layer. J.
Phys. Chem. B, 112(38):11868-72, 2008.
11. A. Lewandowski, A. S. Mocek. Ionic liquids as electrolytes
for Li-ion batteries. An overview of electrochemical studies.
J. Power Sources, 194(2):601-609, 2009.
12. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L.
Taberna. Anomalous increase in carbon capacitance at pore
sizes less than 1 nanometer. Science (New York, N.Y.),
313(5794):1760-3, 2006.
13. A.V. Lankin, G.E. Norman, V. V. Stegailov. Atomistic simulation
of the interaction of an electrolyte with graphite nanostructures
in perspective supercapacitors. High Temperature,
48(6):837-845, 2010.
14. H. Tokuda, K. Hayamizu, K. Ishii, Md. A. B. H. Susan, M.
Watanabe. Physicochemical Properties and Structures of
Room Temperature Ionic Liquids. 1. Variation of Anionic
Species. J. Phys. Chem. B, 108(42):16593-16600, 2004.
15. O. Borodin, G. D. Smith, H. Kim. Viscosity of a room temperature
ionic liquid: predictions from nonequilibrium and
equilibrium molecular dynamics simulations. J. Phys. Chem.
B, 113(14):4771-4, 2009.
16. M. G. Del Popolo, G. A. Voth. On the Structure and Dynamics
of Ionic Liquids. J. Phys. Chem. B, 108(5):1744-1752,
2004.
17. M. Sha, G. Wu, Q. Dou, Z. Tang, H. Fang. Doublelayer formation
of [Bmim][PF6] ionic liquid triggered by surface
negative charge. Langmuir, 26(15):12667-72, 2010.
18. J. Habasaki, K.L. Ngai. Heterogeneous dynamics of ionic
liquids from molecular dynamics simulations. J. Chem.
Phys., 129(19):194501, 2008.
19. M.H. Kowsari, S. Alavi, M. Ashrazaadeh, B. Naja_. Molecular
dynamics simulation of imidazolium-based ionic liquids.
I. Dynamics and diffusion coefficient. J. Chem. Phys.,
129(22):224508, 2008.
20. E. Sloutskin, R. M. Lynden-Bell, S. Balasubramanian, M.
Deutsch. The surface structure of ionic liquids: comparing
simulations with x-ray measurements. J. Chem. Phys.,
125(17):174715, 2006.
21. S. Maolin, Z. Fuchun, W. Guozhong, F. Haiping, W. Chunlei,
C. Shimou, Z. Yi, H. Jun. Ordering layers of
[bmim][PF6] ionic liquid on graphite surfaces: molecular dynamics
simulation. J. Chem. Phys., 128(13):134504, 2008.
22. M.H. Kowsari, S. Alavi, M. Ashrazaadeh, B. Naja_. Molecular
dynamics simulation of imidazolium-based ionic liquids.
II. Transport coefficients. J. Chem. Phys., 130(1):014703,
2009.
23. M. Moreno, F. Castiglione, A. Mele, C. Pasqui, G. Raos.
Interaction of water with the model ionic liquid
[bmim][BF4]: molecular dynamics simulations and comparison
with NMR data. J. Phys. Chem. B, 112(26):7826_36,
2008.
24. M.E. Perez-Blanco, E. J. Maginn. Molecular dynamics simulations
of CO2 at an ionic liquid interface: adsorption, ordering,
and interfacial crossing. J. Phys. Chem. B,
114(36):11827_37, 2010.
25. S. Tsuzuki, W. Shinoda, H. Saito, M. Mikami, H. Tokuda,
M. Watanabe. Molecular dynamics simulations of ionic liquids:
cation and anion dependence of self-diffusion coefficients
of ions. J. Phys. Chem. B, 113(31):10641-9, 2009.
26. C. Schroder, T. Rudas, G. Neumayr, W. Gansterer, O. Steinhauser.
Impact of anisotropy on the structure and dynamics
of ionic liquids: A computational study of 1-butyl-3-methylimidazolium
triuoroacetate. J. Chem. Phys., 127(4):044505,
2007.
27. C. Schroder, T. Rudas, O. Steinhauser. Simulation studies of
ionic liquids: orientational correlations and static dielectric
properties. The J. Chem. Phys., 125(24):244506, 2006.
28. O. Borodin. Polarizable force field development and molecular
dynamics simulations of ionic liquids. J. Phys. Chem. B,
113(33):11463-78, 2009.
29. J. N. Canongia Lopes, A. A. H. Padua. Molecular Force Field
for Ionic Liquids Composed of Triflate or Bistriflylimide
Anions. J. Phys. Chem. B, 108(43):16893-16898, 2004.
30. J. N. Canongia Lopes, J. Deschamps, A. A. H. Padua. Modeling
Ionic Liquids Using a Systematic All-Atom Force Field.
J. Phys. Chem. B, 108(6):2038-2047, 2004.
31. J. de Andrade, E. S. Boes, H. Stassen. Computational Study
of Room Temperature Molten Salts Composed by 1-Alkyl-3-
methylimidazolium Cations Force-Field Proposal and Validation.
J. Phys. Chem. B, 106(51):13344-13351, 2002.
32. P.A. Hunt. The simulation of imidazolium based ionic liquids.
Mol. Sim., 32(1):1-10, 2006.
33. Z. Liu, S. Huang, W. Wang. A Refined Force Field for Molecular
Simulation of Imidazolium-Based Ionic Liquids. J.
Phys. Chem. B, 108(34):12978-12989, 2004.
34. Z. Liu, X. Wu, W. Wang. A novel united-atom force field for
imidazolium-based ionic liquids. Phys. Chem. Chem. Phys.,
8(9):1096- 104, 2006.
35. J. N. C. Lopes, A. A. H. Padua. Molecular force field for
ionic liquids III: Imidazolium, pyridinium, and phosphonium
cations; chloride, bromide, and dicyanamide anions. J. Phys.
Chem. B, 110(39):19586-19592, 2006.
36. S. V. Sambasivarao, O. Acevedo. Development of OPLS-AA
Force Field Parameters for 68 Unique Ionic Liquids. J.
Chem. Th. Comp., 5(4):1038-1050, 2009.
37. S. Plimpton. Fast parallel algorithms for shortrange molecular
dynamics. J. Comp. Phys., 117:1-19, 1995.
38. H. Tokuda, K. Hayamizu, K. Ishii, Md. A. B. H. Susan, M.
Watanabe. Physicochemical properties and structures of
room temperature ionic liquids. 2. Variation of alkyl chain
length in imidazolium cation. J. Phys. Chem. B,
109(13):6103-10, 2005.
39. Rudyak V., Belkin A. A. Nonclassical properties of molecular
diffusion in liquids and dense gases Defect and Diffusion
Forum. 2008. Vol. 273-276. Pp. 560–565.
40. Рудяк В.Я., Белкин А.А., Иванов Д.А., Егоров В.В. Мо-
делирование процессов переноса на основе метода моле-
кулярной динамики. Коэффициент самодиффузии. ТВТ.
2008. Т. 46. № 1. С. 35–44.
41. N. Burch, R.B. Lehoucq, Continuous Time Random Walks
on Bounded Domains. Phys. Rev. E, Volume 83, 012105,
2011.
42. Рудяк В.Я., Белкин А.А., Иванов Д.А., Егоров В.В. О
неклассической диффузии молекул жидкостей и плотных
газов ДАН. 2007. Т. 412. № 4. С. 490-493.
43. Fomin Y.D., Ryzhov V. N. Water-like anomalies in the coresoftened
systems: Dependence on the trajectory in densitytemperature
plane Phys. Lett. A. 2011. Vol. 375. Pp. 2181–
2184.
44. Fomin Y.D., Tsiok E.N., Ryzhov V. N. Complex phase behavior
of the system of particles with smooth potential with
repulsive shoulder and attractive well J. Chem. Phys. 2011.
Vol. 134. P. 044523.
45. Fomin Y.D., Ryzhov V.N., Gribova N. V. Breakdown of
excess entropy scaling for systems with thermodynamic
anomalies Phys. Rev. E. 2010. Vol. 81. P. 061201.
46. Ивановскис Г., Норман Г.Э., Стегайлов В.В., Усманова
Д.Р. Анализ стохастических свойства ионной жидкости.
Статья в этом сборнике.
47. D. Frenkel, B. Smit. Understanding molecular simulation.
From algorithms to applications. Academic Press, 2 edition,
2002.
48. H. Flyvbjerg, H. G. Petersen. Error estimates on averages of
correlated data. J. Chem. Phys., 91(1):461-466, 1989.