Diffusion in ionic liquids. Classical molecular dynamic study
In this paper we investigate the diffusion processes in two ionic liquids: 1-buthyl-3-methylimidazolium tetrafluoroborate and N, N, N-triethyl-N-methylammonium tetrafluoroborate. We discuss different methods for calculating the diffusion coefficients using molecular dynamics method. Two ways of estimating the statistical errors of simulation results were presented and compared. We discuss the stochastic properties of the system and the way they can be used to calculate the diffusion coefficients. Anomalous diffusivity in discussed ionic liquids is considered.
В данной работе исследуются процессы диффузии в двух ионных жидкостях: тетрафторборате 1-бутил-3-метилимидазолии и тетрафторборате N-метил-N,N,N-триэтиламмония. Обсуждаются различные способы вычисления коэффициентов диффузии с помощью молекулярной динамики. Опробованы два способа оценки статистических погрешностей результатов моделирования, проведено их сравнение. Обсуждаются стохастические свойства системы и возможность их использования для вычисления коэффициентов диффузии. Показан аномальный характер диффузии в рассмотренных ионных жидкостях.
1. E.W. Castner, J.F. Wishart. Spotlight on ionic liquids. J. Chem. Phys., 132(12):120901, 2010. 2. H. Hamaguchi, R. Ozawa. Structure of Ionic Liquids and Ionic Liquid Compounds: Are Ionic Liquids Genuine Liquids in the Conventional Sense? Adv. Chem. Phys., 131:85-104, 2005. 3. P. Walden. Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci. (St. Petersburg), pages 405-422, 1914. 4. G. M. Arantes, M.C.C. Ribeiro. A microscopic view of substitution reactions solvated by ionic liquids. J. Chem. Phys., 128(11):114503, 2008. 5. R.M. Lynden-Bell. Redox potentials and screening in ionic liquids: effects of sizes and shapes of solute ions. J. Chem. Phys., 129(20):204503, 2008. 6. G. Giraud, C. M. Gordon, I. R. Dunkin, K. Wynne. The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerreffect spectroscopic study. J. Chem. Phys., 119(1):464, 2003. 7. C. Hardacre, J.D. Holbrey, M. Nieuwenhuyzen, T.G.A. Youngs. Structure and solvation in ionic liquids. Acc. Chem. Res., 40(11):1146-55, 2007. 8. M.N. Kobrak. A comparative study of solvation dynamics in room-temperature ionic liquids. J. Chem. Phys., 127(18):184507, 2007. 9. C. Chen. A functionalised ionic liquid: 1-(3-chloro-2- hydroxypropyl)-3-methyl imidazolium chloride. Physics and Chemistry of Liquids, 48(3):298-306, 2010. 10. M.V. Fedorov, A.A. Kornyshev. Ionic liquid near a charged wall: structure and capacitance of electrical double layer. J. Phys. Chem. B, 112(38):11868-72, 2008. 11. A. Lewandowski, A. S. Mocek. Ionic liquids as electrolytes for Li-ion batteries. An overview of electrochemical studies. J. Power Sources, 194(2):601-609, 2009. 12. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science (New York, N.Y.), 313(5794):1760-3, 2006. 13. A.V. Lankin, G.E. Norman, V. V. Stegailov. Atomistic simulation of the interaction of an electrolyte with graphite nanostructures in perspective supercapacitors. High Temperature, 48(6):837-845, 2010. 14. H. Tokuda, K. Hayamizu, K. Ishii, Md. A. B. H. Susan, M. Watanabe. Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species. J. Phys. Chem. B, 108(42):16593-16600, 2004. 15. O. Borodin, G. D. Smith, H. Kim. Viscosity of a room temperature ionic liquid: predictions from nonequilibrium and equilibrium molecular dynamics simulations. J. Phys. Chem. B, 113(14):4771-4, 2009. 16. M. G. Del Popolo, G. A. Voth. On the Structure and Dynamics of Ionic Liquids. J. Phys. Chem. B, 108(5):1744-1752, 2004. 17. M. Sha, G. Wu, Q. Dou, Z. Tang, H. Fang. Doublelayer formation of [Bmim][PF6] ionic liquid triggered by surface negative charge. Langmuir, 26(15):12667-72, 2010. 18. J. Habasaki, K.L. Ngai. Heterogeneous dynamics of ionic liquids from molecular dynamics simulations. J. Chem. Phys., 129(19):194501, 2008. 19. M.H. Kowsari, S. Alavi, M. Ashrazaadeh, B. Naja_. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. J. Chem. Phys., 129(22):224508, 2008. 20. E. Sloutskin, R. M. Lynden-Bell, S. Balasubramanian, M. Deutsch. The surface structure of ionic liquids: comparing simulations with x-ray measurements. J. Chem. Phys., 125(17):174715, 2006. 21. S. Maolin, Z. Fuchun, W. Guozhong, F. Haiping, W. Chunlei, C. Shimou, Z. Yi, H. Jun. Ordering layers of [bmim][PF6] ionic liquid on graphite surfaces: molecular dynamics simulation. J. Chem. Phys., 128(13):134504, 2008. 22. M.H. Kowsari, S. Alavi, M. Ashrazaadeh, B. Naja_. Molecular dynamics simulation of imidazolium-based ionic liquids. II. Transport coefficients. J. Chem. Phys., 130(1):014703, 2009. 23. M. Moreno, F. Castiglione, A. Mele, C. Pasqui, G. Raos. Interaction of water with the model ionic liquid [bmim][BF4]: molecular dynamics simulations and comparison with NMR data. J. Phys. Chem. B, 112(26):7826_36, 2008. 24. M.E. Perez-Blanco, E. J. Maginn. Molecular dynamics simulations of CO2 at an ionic liquid interface: adsorption, ordering, and interfacial crossing. J. Phys. Chem. B, 114(36):11827_37, 2010. 25. S. Tsuzuki, W. Shinoda, H. Saito, M. Mikami, H. Tokuda, M. Watanabe. Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions. J. Phys. Chem. B, 113(31):10641-9, 2009. 26. C. Schroder, T. Rudas, G. Neumayr, W. Gansterer, O. Steinhauser. Impact of anisotropy on the structure and dynamics of ionic liquids: A computational study of 1-butyl-3-methylimidazolium triuoroacetate. J. Chem. Phys., 127(4):044505, 2007. 27. C. Schroder, T. Rudas, O. Steinhauser. Simulation studies of ionic liquids: orientational correlations and static dielectric properties. The J. Chem. Phys., 125(24):244506, 2006. 28. O. Borodin. Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B, 113(33):11463-78, 2009. 29. J. N. Canongia Lopes, A. A. H. Padua. Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions. J. Phys. Chem. B, 108(43):16893-16898, 2004. 30. J. N. Canongia Lopes, J. Deschamps, A. A. H. Padua. Modeling Ionic Liquids Using a Systematic All-Atom Force Field. J. Phys. Chem. B, 108(6):2038-2047, 2004. 31. J. de Andrade, E. S. Boes, H. Stassen. Computational Study of Room Temperature Molten Salts Composed by 1-Alkyl-3- methylimidazolium Cations Force-Field Proposal and Validation. J. Phys. Chem. B, 106(51):13344-13351, 2002. 32. P.A. Hunt. The simulation of imidazolium based ionic liquids. Mol. Sim., 32(1):1-10, 2006. 33. Z. Liu, S. Huang, W. Wang. A Refined Force Field for Molecular Simulation of Imidazolium-Based Ionic Liquids. J. Phys. Chem. B, 108(34):12978-12989, 2004. 34. Z. Liu, X. Wu, W. Wang. A novel united-atom force field for imidazolium-based ionic liquids. Phys. Chem. Chem. Phys., 8(9):1096- 104, 2006. 35. J. N. C. Lopes, A. A. H. Padua. Molecular force field for ionic liquids III: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J. Phys. Chem. B, 110(39):19586-19592, 2006. 36. S. V. Sambasivarao, O. Acevedo. Development of OPLS-AA Force Field Parameters for 68 Unique Ionic Liquids. J. Chem. Th. Comp., 5(4):1038-1050, 2009. 37. S. Plimpton. Fast parallel algorithms for shortrange molecular dynamics. J. Comp. Phys., 117:1-19, 1995. 38. H. Tokuda, K. Hayamizu, K. Ishii, Md. A. B. H. Susan, M. Watanabe. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B, 109(13):6103-10, 2005. 39. Rudyak V., Belkin A. A. Nonclassical properties of molecular diffusion in liquids and dense gases Defect and Diffusion Forum. 2008. Vol. 273-276. Pp. 560–565. 40. Рудяк В.Я., Белкин А.А., Иванов Д.А., Егоров В.В. Мо- делирование процессов переноса на основе метода моле- кулярной динамики. Коэффициент самодиффузии. ТВТ. 2008. Т. 46. № 1. С. 35–44. 41. N. Burch, R.B. Lehoucq, Continuous Time Random Walks on Bounded Domains. Phys. Rev. E, Volume 83, 012105, 2011. 42. Рудяк В.Я., Белкин А.А., Иванов Д.А., Егоров В.В. О неклассической диффузии молекул жидкостей и плотных газов ДАН. 2007. Т. 412. № 4. С. 490-493. 43. Fomin Y.D., Ryzhov V. N. Water-like anomalies in the coresoftened systems: Dependence on the trajectory in densitytemperature plane Phys. Lett. A. 2011. Vol. 375. Pp. 2181– 2184. 44. Fomin Y.D., Tsiok E.N., Ryzhov V. N. Complex phase behavior of the system of particles with smooth potential with repulsive shoulder and attractive well J. Chem. Phys. 2011. Vol. 134. P. 044523. 45. Fomin Y.D., Ryzhov V.N., Gribova N. V. Breakdown of excess entropy scaling for systems with thermodynamic anomalies Phys. Rev. E. 2010. Vol. 81. P. 061201. 46. Ивановскис Г., Норман Г.Э., Стегайлов В.В., Усманова Д.Р. Анализ стохастических свойства ионной жидкости. Статья в этом сборнике. 47. D. Frenkel, B. Smit. Understanding molecular simulation. From algorithms to applications. Academic Press, 2 edition, 2002. 48. H. Flyvbjerg, H. G. Petersen. Error estimates on averages of correlated data. J. Chem. Phys., 91(1):461-466, 1989.