Систематическая процедура упрощения кинетических механизмов химических процессов



Systematic procedure for simplification of kinetic mechanisms of chemical processes

Use of detailed kinetic mechanisms during modeling of phenomena, including chemical transformations, is important for complete and precise description of processes in wide range of initial and boundary conditions. Since use of detailed kinetic mechanisms in multidimensional hydrodynamic calculations is generally impossible due to high computational complexity, a problem of reduction of kinetic mechanisms is a necessary step towards the use of detailed kinetic information in multidimensional calculations. A systematic procedure for simplification of kinetic mechanisms, based on combining of non-empiric techniques for mechanisms simplification (DRG, CSP and sensitivity analysis) is introduced in the article. It is shown, that applying of developed procedure allows obtaining the most compact reduced mechanisms, containing less number of species and reactions compared to applying of techniques separately. Comparison to mechanisms, obtained previously by means of expert analysis, is present. Procedure has been applied to simplify mechanisms of combustion of kerosene surrogate and tar gasification. As a result mechanism of combustion of kerosene surrogate, consisting of 71 species and 417 reactions, has been reduced to 47 species and 92 reactions. Mechanism of tar gasification, consisting of 177 species and 879 reversible reactions has been reduced to 81 species and 131 irreversible reactions.

Александр Владимирович Лебедев, Михаил Владимирович Окунь, Алексей Евгеньевич Баранов, Максим Александрович Деминский, Борис Васильевич Потапкин

Том 10, 2010 год



Использование детальных кинетических механизмов при моделировании явлений, включающих химические превращения, важно для полного и точного описания процессов в широком диапазоне начальных и граничных условий. Поскольку использование детальных кинетических механизмов в многомерных гидродинамических расчетах, как правило, невозможно из-за высокой вычислительной сложности, задача редуцирования кинетических механизмов является необходимым этапом на пути использования детальной кинетической информации в многомерных расчетах. В статье излагается систематическая процедура упрощения кинетических механизмов, основанная на использовании комбинации неэмпирическая методов упрощения механизмов (DRG, CSP и анализа чувствительности.). Показано, что применение разработанной процедуры позволяет получать наиболее компактные редуцированные механизмы, содержащие меньшее количество веществ и реакций, по сравнению с использованием отдельных методов редуцирования. Приведено сравнение механизмов, полученных при помощи разработанной процедуры с ранее полученными методом экспертного анализа механизмами. Процедура применена для упрощения механизмов горения суррогата керосина и газификации углеводородов. В результате механизм горения суррогата керосина из 71 вещества и 417 реакций был уменьшен до 47 веществ и 92 реакций. Механизм газификации углеводородов из 177 веществ и 879 обратимых реакций был уменьшен до 83 вещества и 278 необратимых реакций.

Александр Владимирович Лебедев, Михаил Владимирович Окунь, Алексей Евгеньевич Баранов, Максим Александрович Деминский, Борис Васильевич Потапкин

Том 10, 2010 год



1. Mauro Valorani, Francesco Creta. A CSP-based skeletal mechanism generation procedure: auto-ignition and premixed laminar flames in n-heptane/air mixtures, European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006
2. Mauro Valorani, Francesco Creta. An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP // Combustion and Flame Vol.146, 2006, pp. 29–51
3. S. H. Lam, D.A. Goussis The CSP Method for Simplifying Kinetics // International Journal of Chemical Kinetics Vol.26, 1994, pp. 461-486
4. Perrine Pepiot, Heinz Pitsch. Systematic Reduction of Large Chemical Mechanisms. 4th Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, PA, 2005
5. Nancy J. Brown, Guoping Li, Mechanism Reduction Via Principal Component Analysis // Int J Chem Kinet Vol.29, 1997, pp. 393–414.
6. S. Vajda, T. Turanui, Principal Component Analysis of Kinetic Models // Int J Chem Kinet Vol. 17, 1985, pp. 55-81.
7. A. G. Xia, D. V. Michelangeli. Mechanism reduction for the formation of secondary organic aerosol for integration into a 3-dimensional regional air quality model: α-pinene oxidation system // Atmos. Chem. Phys.,Vol. 9, 2009, pp. 4341–4362.
8. J.-Y. Chen. Development of Reduced Mechanisms for Numerical Modelling of Turbulent Combustion. Workshop on Numerical Aspects of Reduction in Chemical Kinetics, CERMICS-ENPC, Cite Descartes – Champus sur Marne, France, September 2, 1997
9. Yu Shi, Hai-Wen Ge. Automatic Chemistry Mechanism Reduction of Hydrocarbon Fuels for HCCI Engines Based on DRGEP and PCA Methods with Error Control // Energy Fuels, Vol. 24, 2010, pp. 1646-1654.
10. Wenting Sun, Zheng Chen. A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms. Avaliable online http://engine.princeton.edu/Publications/A%20PFA%20Method%20for%20the%20Reduction%20of%20Detailed%20Chemical%20Kinetic%20Mechanisms.pdf
11. Xiaolong Gou, Wenting Sun. A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms // Comb. And Flame Vol. 157, 2010, pp. 1111-1121.
12. M.I. Strelkova, A.A. Safonov. Detailed and Reduced Mechanisms of Jet Combustion at High Temperatures // Comb Science and Technology, Vol. 180, 2008, pp. 1788-1802.
13. A. Massias, D. Diamantis. An Algorithm for the Construction of Global ReducedMechanisms With CSP Data. // Comb. And Flame, Vol 117, 1999, pp. 685-708.
14. Tianfeng Lu, Yiguang Lu. Complex CSP for Chemistry Reduction and Analysis. // Comb. and Flame Vol. 126, 2001. pp.1445-1455
15. D.A. Goussis. On the Construction and Use of Reduced Chemical Kinetic Mechanisms Produced on the Basis of Given Algebraic Relations. // Journal of Computational Physics, Vol. 128, 1996, pp. 261-273.
16. Andrei Kazakov, Marcos Chaos. Computational Singular Perturbation Analysis of Two-Stage Ignition of Large Hydrocarbons. // J. Phys. Chem Vol 110, 2006, pp. 7003-7009.
17. Jeffrey A. Shorter, Precila C. Ip. An Efficient Chemical Kinetics Solver Using High Dimensional Model representation. // J. Phys Chem V. 103, 1999, pp. 7192-7198
18. Nicholas J. Glassmaker. Intrinsic Low-Dimensional Manifold Method for Rational Simplification of Chemical Kinetics, 1999. Avaliable online http://www.nd.edu/~powers/nick.glassmaker.pdf
19. Robert P. Dickinson and Robert J. Gelinas. Sensitivity Analysis of Ordinary Differential Equation Systems – A Direct Method. // Journal of Computational Physics, Vol. 21, 1976, pp. 123-143
20. S.B. Pope. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation
21. L.E. Whitehouse, A.S. Tomlin. Systematic reduction of complex troposhpheric chemical mechanisms, Part II: Lumping using a time-scale based approach. // Atmoshperic Chemistry and Physics, Vol. 4, 2004, pp. 2057-2081