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Abstract 

The paper presents the numerical results of the verification calculations of the flow around a 
compression ramp with a surface inclination angle in the range from 20 to 49 by an air or 
argon flow. University of Toronto shock tube experimental data [Deschambault R.L. and 
Glass I.I. An update on non-stationary oblique shock-wave reflections: actual isopycnics and 
numerical experiments // Journal of Fluid Mechanics. 1983. Vol. 131] were used as initial data 
for numerical simulation. The complex Mach and double Mach reflection computational data 
comparison was performed under conditions different numerical models using. The different 
numerical schemes feature effect shock wave structures receiving was estimated. 

Keywords: incident shock wave, reflected shock wave, Mach step, contact discontinuity, regular 
reflection, Mach reflection, arbitrary discontinuity decay, limiter, approximation order 
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Non-dimensional density distribution for case 5 (a) and case 9 (b) obtained by the TVD-
limiters and 5th order interpolation scheme 
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Аннотация 

В рамках данной работы представлены результаты верификационных расчетов обтекания 
угла сжатия с углом наклона поверхности в диапазоне от 20 ÷ 49 потоком воздуха или 
аргона. Для численного моделирования были выбраны исходные данные, соответствую-
щие циклу стендовых экспериментов, выполненных на ударной трубе университета То-
ронто [Deschambault R.L. and Glass I.I. JFM, 1983]. Выполнено сравнение расчетных дан-
ных для случаев переходного и двойного маховских отражений, полученных с 
применением различных численных моделей. Дана оценка влияния различных элементов 
использованных численных схем на точность воспроизведения наблюдаемых в экспери-
менте газодинамических структур. 

Ключевые слова: падающая ударная волна, отраженная ударная волна, ножка Маха, кон-
тактный разрыв, регулярное отражение, маховское отражение, распад произвольного раз-
рыва, лимитер, порядок аппроксимации 

1. Введение 

Маховское отражение представляет собой разновидность взаимодействия набегающей 
ударной волны с обтекаемой поверхностью, приводящей к образованию сложных полей те-
чения, включающих собственно исходную ударную волну, отраженную ударную волну, 
ножку Маха и контактный разрыв. В зависимости от конкретного типа маховского отражения 
[1–2], а также сочетания исходных данных (геометрия задачи, параметры набегающего по-
тока, свойства газа) формирующиеся ударно-волновые конфигурации могут включать допол-
нительные газодинамические структуры, детальное исследование которых представляет 
непосредственный интерес с точки зрения оценки влияния на получаемые результаты раз-
личных численных схем и их отдельных элементов: способов аппроксимации естественных 
или консервативных переменных, метода решения задачи о распаде произвольного разрыва 
и т.д. В работе [3] исследовалось двойное и тройное маховское отражение на клине с исполь-
зованием TVD-модификации схемы Маккормака, что позволило получить режим отрица-
тельного маховского отражения с множественными тройными конфигурациями. В статье [4] 
выполнено численное моделирование отражения ударной волны от стенки с применением 
взвешенных существенно неосциллирующих схем WENO высокого порядка точности, реа-
лизованных в покомпонентной и в характеристической форме, на неструктурированных сет-
ках. Расчетное исследование перехода между регулярным и маховским отражением с учетом 
модели турбулентности Спаларта  Алмараса было осуществлено в рамках работы [5]. Ис-
следование влияния вязкостных эффектов на маховское отражение от двух симметрично рас-
положенных клиньев было проведено в работе [6] с использованием схем WENO 5-го по-
рядка точности, а также метода прямого статистического моделирования DSMC. Следует 
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также отметить, что вопросы моделирования вязких течений имеют особую важность в усло-
виях взаимодействия ударных волн с пограничным слоем, которое исследовалось, в частно-
сти, в работах [7, 8]. В работах [9, 10] анализировались процессы регулярного и маховского 
отражения в широком диапазоне чисел Маха как при адиабатических граничных условиях, 
так и с учетом изменения температуры стенки. В работе [11] исследовался переход от махов-
ского отражения к регулярному при взаимодействии сильных ударных волн с цилиндриче-
скими поверхностями. В статье [12] представлены результаты исследования двойного махов-
ского отражения ударных волн для условий, соответствующим интенсивным физико-
химическим превращениям в газе. 

В данной работе представлены результаты численного моделирования маховского от-
ражения на структурированных конечно-объемных сетках, полученные с использованием 
двухмерных уравнений Эйлера, в рамках процедуры численного интегрирования которых 
реализованы различные подходы к повышению пространственного порядка аппроксимации. 
Кроме того, выполнен сравнительный анализ двух приближенных методов решения задачи о 
распаде произвольного разрыва на получаемые ударно-волновые структуры. Нужно также 
отметить, что данная статья в целом посвящена апробации двухмерной конечно-объемной 
методики повышенного порядка точности, восходящей к более ранним работам по простран-
ственной вычислительной аэродинамике [13–23]. 

2. Постановка задачи, основные уравнения, численный метод 

Двухмерная нестационарная система уравнений Эйлера имеет вид 

     0x yt x y

  
  

  
w

F F  (1) 

Исходные уравнения (1) включают в себя: w  – вектор-столбец консервативных пере-
менных; ,x yF F  – проекции вектора-столбца конвективного невязкого потока; , ,x y t  – про-
странственные координаты и время. Искомые векторные величины определяются как 
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Здесь   – плотность; ,u v  – проекции вектора скорости; E  – удельная полная энергия;  
H  – удельная полная энтальпия; p  – давление. Замыкающими соотношениями для данной 
системы являются уравнение состояния совершенного газа и калорическое уравнение  
состояния 

 0R
p T


 , (4) 

 VU с T  (5) 

Связь между кинетической и полной энергией определяется как 
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В соотношениях (4)–(6) 0R  – универсальная газовая постоянная;   – молекулярная 
масса; T  – температура; U  – удельная внутренняя энергия; Vс  – удельная теплоемкость при 
постоянном объеме;   – показатель адиабаты. В рамках данной численной модели учитыва-
лась температурная зависимость теплоемкости, которая определялась по следующей фор-
муле [24] 

  ( ) refT
p p refс T с T T


  (7) 

Здесь pс  – удельная теплоемкость при постоянном давлении; refT
pс  – удельная теплоемкость 

при постоянном давлении для характерной температуры; 300refT  K – характерная темпера-
тура; 0.1  . 

Численное интегрирование системы уравнений (1) выполнялось с использованием ме-
тода конечных объемов. В ходе расчетов использовались структурированные конечно-объ-
емные четырехугольные сетки, включающие от 1.2 млн. до 2 млн. элементов. На поверхности 
клина задавались граничные условия проскальзывания. Сама поверхность считалась адиаба-
тической.  

В рамках процедуры повышения пространственного порядка аппроксимации выполня-
лась реконструкция вектора естественных переменных с использованием полинома 3-го или 
5-го порядка [25]. Расчет значений компонент вектора естественных переменных в конечном 
объеме выполняется с использованием следующих формул [25] 

   1 20.5L i L ir   Φ Φ Φ , (8) 

  1 3 20.5R i R ir   Φ Φ Φ  (9) 

Здесь  , , , Tu pΦ v  – вектор естественных переменных. На рис. 1 представлена схема рас-

положения конечных объемов на структурированной четырехугольной сетке. 

 

Рис. 1. Схема расположения конечных объемов на структуриро-
ванной четырехугольной сетке (дробные индексы соответствуют 
граням между соседними объемами) 

В соотношениях (8)–(9) LΦ  – значение естественной переменной в конечном объеме 
текущего элемента; RΦ  – значение естественной переменной в конечном объеме соседнего 
элемента; iΦ , 1iΦ  – значения естественной переменной в центре текущего и соседнего ко-
нечного объема;  Lr ,  Rr  – TVD-лимитеры, которые определяются как [25, 26] 

    ,max 0,min 2,2 ,L L i Lr r     , (10) 

    , 1max 0,min 2,2 ,R R i Rr r      (11) 
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В данной формуле в случае использовании полинома 3-го порядка 
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Для полинома 5-го порядка коэффициенты L  и R  имеют вид  
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В соотношениях (12)–(15) 
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Расчет уточненных значений на гранях конечных объемов выполняется с использова-
нием следующих соотношений [25] 
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Здесь ,superbeeLΦ  и ,superbeeRΦ  – значения естественных переменных, полученные с использо-

ванием лимитера Superbee [25] по формулам (8)–(9);    21 min 1, max M , ML Ra   ;  

ML , MR  – числа Маха в текущем и соседнем конечном объеме. 
В работе [25] также изложен подход, основанный на использовании схемы с многомер-

ными лимитерами, которые вводятся с использованием следующих формул: 

    , 1 2 , 1 20.5 , , 0.5max 0,min , ,L i L i L L i i L L i L L ir r             Φ Φ Φ Φ Φ , (18) 

        1 , 1 3 2 1 , 1 3 20.5 , , 0.5max 0,min , ,R i R i R R i i R R i R R ir r                 Φ Φ Φ Φ Φ  (19) 

Параметры L  и R  зависят от направления и для направления i  определяются как 
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Для направления j  имеют место аналогичные соотношения 
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В соотношениях (20)–(21) используется следующая функция: 

     max 1,min 2,g x x  (22) 

На рис. 2 показана схема расположения конечных объемов при расчетах с использова-
нием многомерных лимитеров. 

 

Рис. 2. Схема расположения конечных объемов 
на структурированной четырехугольной сетке 
для расчета параметров с использованием мно-
гомерного лимитера 

В сравнительных расчетах, кроме схем, основанных на уравнениях (8)–(22), также ис-
пользуется более простая в реализации MUSCL-схема [27] 

     1/2 1/20.25 1 1L i i ik k        Φ Φ Φ Φ , (23) 

     1 1/2 3/20.25 1 1R i i ik k        Φ Φ Φ Φ  (24) 

Здесь 1  , 0k  . 
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Для приближенного решения задачи о распаде произвольного разрыва используется 
SLAU2 схема, в общем случае обеспечивающая получение четких газодинамических струк-
тур с подавлением возникающих неустойчивостей в широком диапазоне чисел Маха. В соот-
ветствии с этой схемой вектор невязкого потока на гранях конечного объема имеет вид [28] 

 1 2F = N
2 2L R

m m m m
p

 
   

        , (25) 

    
1 2

1
=

2 L nL n R nL nm V V V V p
c

         
  

 , (26) 

         
2 2 2 2

0 0
1 20 0 1

2 2 2
L R L L R R

L R
p p u u

p p p c 
 

 
    
  

   
      

v v , (27) 

  = 1n n nLV g V g V
   , (28) 

  = 1n n nRV g V g V
   , (29) 

 = L nL R nR
n

L R

V V
V

 
 




, (30) 

  2
= 1 M   , (31) 

 
2 2 2 2

1 2

1
M=min 1,

2
L L R Ru u

c

   
  
 

 v v
, (32) 

 
  

   
0

2

1
1 M ,  M 1

2=
1

M 1 2 M , M 1
4

sign

 

  

  


 (33) 

 vnL L x L yV u n n  ,   vnR R x R yV u n n  , (34) 

 R Lp p p   , (35) 

  1 2 0.5 L Rc c c  , (36) 

  0.5 L R    , (37) 

      max min M ,0 , 1 min max M ,0 ,1L Rg      (38) 

В уравнение (25) входят вектор консервативных переменных  = 1, , , Tu H v


 и вектор 

нормали  = 0, , ,0 T
x yN n n


. В уравнениях (26)–(38) Lp , Rp , L , R , Lu , Ru , vL , vR , Lc , Rc  – дав-

ление, плотность, компоненты вектора скорости, скорость звука в текущем и соседнем объе-
мах, xn , yn  – направляющие косинусы вектора нормали, M  – местное число Маха. 

В рамках данной работы было выполнено сравнение влияния на получаемые газодина-
мические структуры различных методов приближенного решения задачи Римана. Помимо 
схемы SLAU2 [28] также использовалась схема AUSM+up [29], обладающая значительной 
точностью разрешения ударно-волновых конфигураций. В соответствии с данной схемой по-
ток массы определяется как 
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1 2

1 2 1 2

1 2

, M 0
M

, M 0

L

R

m c




  


  (39) 

 1 2M =M M ML R p
   , (40) 

 
 

   
,

22 2

1
M M , при  M 1

2M =
1 1

M 1 M 1 , при M 1
4 8

L R


  

    

 (41) 

  2
2

1 2 1 2

M max 1 M ,0p R L
p

a

K p p

f c





   , (42) 

 L R up p p p      , (43) 

 
  

     22 2

1
1 M , M 1

2=
1

M 1 2 M M M 1 , M 1
4

sign






  

    


, (44) 

      1 2u u L R a nR nLp K f c V V            , (45) 

  23
4 5

16 af    ,    M 2 Ma o of   , (46) 

  2 2 2M min 1, max M , Mo     ,   
2 2

2
2
1 2

M
2

nL nRV V

c


 , (47) 

 0.25pK  ,   0.75uK  , 1   (48) 

3. Результаты расчетов 

Из набора экспериментальных данных [30] (см. таблицу 1) были рассмотрены тестовые 
случаи, соответствующие переходному и двойному маховскому отражениям. Для всех тесто-
вых случаев был выполнен цикл расчетов с использованием следующих численных методов: 

1) Схема 1. Метод конечного объема 1-го порядка пространственной аппроксимации.  
2) Схема 2. Метод конечного объема с использованием MUSCL-схемы [27].  
3) Схема 3. Метод конечного объема с использованием интерполяционного полинома  

3-го порядка, TVD-лимитеров minmod и Superbee в рамках подхода [25].  
4) Схема 4. Метод конечного объема с использованием интерполяционного полинома  

5-го порядка, TVD-лимитеров minmod и Superbee в рамках подхода [25].  
5) Схема 5. Метод конечного объема с использованием интерполяционного полинома  

5-го порядка, многомерных TVD-лимитеров minmod и Superbee в рамках подхода [25].  
6) Схема 6. Метод конечного объема с использованием интерполяционного полинома  

5-го порядка, многомерных TVD-лимитеров minmod и Superbee в рамках подхода [25] 
с использованием схемы AUSM+up.  

Для приближенного решения задачи Римана в схемах 1–5 использовалась SLAU2 [28] 
схема, а в схеме 6 – AUSM+up [29] схема. 
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Таблица 1 

Исходные данные для расчетов в соответствии с условиями стендовых экспериментов [30] 

№ Газ Тип отражения 
Угол наклона, 

град 
M s  0 , торрp  0 ,KT  0 , г/см3 

4 Воздух Переходное маховское 200 7.19 60 298.5 9.29×105 

5 Воздух Двойное маховское 270 8.70 30.8 299.2 4.76×105 

9 Аргон Двойное маховское 490 7.10 15 296.3 3.29×105 

Перед анализом полученных результатов также следует перечислить ключевые газоди-
намические структуры, наблюдаемые в эксперименте, и подлежащие воспроизведению в рас-
чете. Принципиальная схема переходного маховского отражения для тестового случая № 4 по-
казана на рис. 3. В результате взаимодействия ударной волны с поверхностью обтекаемого 
клина формируется дугообразная отраженная ударная волна (2), плавно переходящая в прямую 
линию в окрестности тройной точки, из которой в свою очередь исходят падающая ударная 
волна (1) и ножка Маха (3). Последним элементом картины переходного маховского отраже-
ния является неустойчивый контактный разрыв (4), имеющий спиралевидную форму. 

 
Рис. 3. Двойное маховское отражение в аргоне: 1 – падающая 
ударная волна; 2 – отраженная ударная волна; 3 – ножка Маха; 
4 – контактный разрыв 

Результаты применения схемы 1 (рис. 4, а) демонстрируют относительно корректное вос-
произведение только ударных волн и ножки Маха, не выделяя при этом контактный разрыв. 
Схема 2 (рис. 4, б) позволяет численно визуализировать контактный разрыв, что, однако, со-
провождается проявлением численных неустойчивостей как в окрестности фронта падающей 
волны, так и в ударном слое. 

 

(а) 
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(б) 

Рис. 4. Результаты численного моделирования переходного маховского отражения в 
воздухе для тестового случая № 4. Распределение безразмерной плотности: (а) схема 
1-го порядка аппроксимации; (б) MUSCL-схема без применения лимитеров 

При проведении расчетов с использованием интерполяционных полиномов 5-го по-
рядка (схема 4, рис. 5, б) удается значительно лучше разрешить контактный разрыв, чем с 
интерполяционными полиномами 3-го порядка (схема 3, рис. 5, а). Использование TVD-ли-
митеров в схемах 3–4 позволяет также в значительной степени скорректировать осцилляции 
поля течения Применение схем 5 и 6 демонстрирует полученные различия для SLAU2 и 
AUSM+up схем, которые наиболее отчетливо проявляются в области, ограниченной ножкой 
Маха и спиралевидным контактным разрывом (рис. 6, а, б).  

 

(а) 

 

(б) 

Рис. 5. Результаты численного моделирования переходного маховского отражения в 
воздухе для тестового случая № 4. Распределение безразмерной плотности: (а) схема 
с использованием интерполяционного полинома 3-го порядка; (б) схема с использо-
ванием интерполяционного полинома 5-го порядка 
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(а) 

 

(б) 

Рис. 6. Результаты численного моделирования переходного маховского отражения в 
воздухе для тестового случая № 4. Распределение безразмерной плотности: (а) схема 
с использованием интерполяционного полинома 5-го порядка и многомерных TVD-
лимитеров; (б) схема с использованием интерполяционного полинома 5-го порядка, 
многомерных TVD-лимитеров, а также схемы AUSM+up 

На рис. 7 показана схема двойного маховского отражения в воздушном потоке для усло-
вий тестового случая № 5. По сравнению с переходным маховским отражением изменяется 
форма отраженной ударной волны (2), которая приобретает точку излома, из которой выхо-
дит дополнительная ножка Маха (4).  

 
Рис. 7. Двойное маховское отражение в воздухе: 1 – падающая 
ударная волна; 2 – отраженная ударная волна; 3, 4 – ножки Маха; 
5 – контактный разрыв  
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Расчеты выполненные с использованием схемы 1 (рис. 8, а), хотя и демонстрируют 
гладкость изолиний безразмерной плотности, тем не менее не позволяют выявить точную 
форму контактного разрыва (5 на рис. 7) и определить структуру дополнительной ножки 
Маха (4 на рис. 7). Эта проблема в значительной степени преодолевается при проведении 
численного моделирования по схеме 2 (рис. 8, б). При этом контактный разрыв имеет доста-
точно размытые контуры. Главная проблема проявляется в деформации основной ножки 
Маха (3 на рис. 7), что представляет собой одно из проявлений неустойчивости численной 
схемы.  

  

(а) (б) 

Рис. 8. Результаты численного моделирования двойного маховского отражения в воздухе для те-
стового случая № 5. Распределение безразмерной плотности: (а) схема 1-го порядка аппроксима-
ции; (б) MUSCL-схема без применения лимитеров 

Сравнение численных схем 3 и 4 (рис. 9, а, б) показывает, что применение интерполя-
ционных полиномов более высокого порядка обеспечивает значительно большее разрешение 
второй ножки Маха и контактного разрыва, чем при использовании схем 1 и 2, но, как и в 
случае со схемой 2, отмечается некоторая неровность первой ножки Маха. Реализация схем 
5 и 6 с многомерными лимитерами (рис. 10, а, б) в данном случае не приводит к качествен-
ному изменению подробности получаемых газодинамических структур. Вместе с тем, возни-
кающие элементы численных неустойчивостей также слабо зависят от применяемого под-
хода к решению задачи о распаде произвольного разрыва.  

 
 

(а) (б) 

Рис. 9. Результаты численного моделирования двойного маховского отражения в воздухе для те-
стового случая № 5. Распределение безразмерной плотности: (а) схема с использованием интер-
поляционного полинома 3-го порядка; (б) схема с использованием интерполяционного полинома 
5-го порядка 
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Несмотря на внешнее сходство с тестовым случаем № 4, за счет увеличения числа Маха 
для всех рассмотренных численных схем фиксируется меньший отход отраженной ударной 
волны от поверхности угла сжатия. При этом также необходимо отметить изменение пропор-
ций между зоной, ограниченной основной ножкой Маха (3) и контактным разрывом (5) и 
общей площадью области возмущенного потока. Изменение формы контактного разрыва (5) 
по сравнению с тестовым случаем № 4 начинает происходить на существенно более близком 
расстоянии от поверхности клина. 

Еще одним заметным эффектом применения различных численных схем является из-
менение соотношения безразмерных плотностей в областях 1-2-4-1 и 1-5-3-1 (см. рис. 7). Так 
использование схемы 4 (рис. 9, б) позволяет более точно определить значения безразмерной 
плотности в окрестности тройной точки в сравнении с теневыми картинами из работы [30]. 

  

(а) (б) 
Рис. 10. Результаты численного моделирования двойного маховского отражения в воздухе для 
тестового случая № 5. Распределение безразмерной плотности: (а) схема с использованием ин-
терполяционного полинома 5-го порядка и многомерных TVD-лимитеров; (б) схема с исполь-
зованием интерполяционного полинома 5-го порядка и многомерных TVD-лимитеров, а также 
схемы AUSM+up 

Принципиальная схема двойного маховского отражения в аргоне для тестового случая 
№ 9 показана на рис. 11. Помимо падающей (1) и отраженной (2) ударной волны, ножки Маха 
(3) и контактного разрыва (5), образуются также дополнительная ножка Маха (4), и еще один 
контактный разрыв (6). 

 
Рис. 11. Двойное маховское отражение в аргоне: 1 – падающая 
ударная волна; 2 – отраженная ударная волна; 3, 4 – ножки Маха; 
5, 6 – контактные разрывы  



Физико-химическая кинетика в газовой динамике 2025 Т.26 (8) http://chemphys.edu.ru/issues/2025-26-8/articles/1238 

 14

На рисунках 12–14 представлены результаты верификации различных моделей на при-
мере численного моделирования двойного маховского отражения в аргоне для набора исход-
ных данных, соответствующих тестовому случаю № 9. На рис. 12, а, б демонстрируются 
ударно-волновые структуры, получаемые с применением схемы 1-го порядка точности и 
MUSCL-схемы без лимитера. В первом случае не удается получить вторую ножку Маха (№ 4 
на рис. 11) и дополнительный контактный разрыв (№ 6 на рис. 11). При этом первый контакт-
ный разрыв (№ 5 на рис. 11) имеет постоянную форму и не демонстрирует признаков неустой-
чивости. Использование MUSCL-схемы обеспечивает надлежащую визуализацию второй 
ножки Маха (№ 4 на рис. 11), а также позволяет получить большее значение безразмерной 
плотности в окрестности примыкания изгиба контактного разрыва к поверхности угла сжатия. 
Переход к использованию TVD-лимитеров Superbee и minmod совместно с интерполяцион-
ными полиномами 3-го порядка (рис. 13, а) в свою очередь дает хорошее разрешение дополни-
тельного контактного разрыва (№ 6 на рис. 11), при этом несколько размазывая ножку Маха 
(№ 4 на рис. 11). Интерполяционные полиномы 5-го порядка (рис. 13, б) демонстрируют каче-
ственную визуализацию всех ключевых компонентов двойного маховского отражения.  

  
(а) (б) 

Рис. 12. Результаты численного моделирования двойного маховского отражения в аргоне 
для тестового случая № 9. Распределение безразмерной плотности: (а) схема 1-го порядка 
аппроксимации, (б) MUSCL-схема без применения лимитеров 

  
(а) (б) 

Рис. 13. Результаты численного моделирования двойного маховского отражения в аргоне 
для тестового случая № 9. Распределение безразмерной плотности: (а) схема с использо-
ванием интерполяционного полинома 3-го порядка; (б) схема с использованием интерпо-
ляционного полинома 5-го порядка 
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Для более достоверной оценки пикового значения безразмерной плотности вдоль по-
верхности обтекаемого угла сжатия были проведены расчеты с использованием многомер-
ных TVD-лими-теров и интерполяционных полиномов 5-го порядка (рис. 14, а). Применение 
вместо SLAU2-схемы AUSM+up подхода (рис. 14, б) увеличивает интенсивность ударно-вол-
нового взаимодействия и значения безразмерной плотности в областях, ограниченными нож-
ками Маха, контактными разрывами и отраженной ударной волной. 

  
(а) (б) 

Рис. 14. Результаты численного моделирования двойного маховского отражения в аргоне 
для тестового случая № 9. Распределение безразмерной плотности: (а) схема с использо-
ванием интерполяционного полинома 5-го порядка и многомерных TVD-лимитеров; (б) 
схема с использованием интерполяционного полинома 5-го порядка, многомерных TVD-
лимитеров, а также схемы AUSM+up 

На рис. 15 показан результат эволюции структуры двойного маховского отражения в 
воздухе (рис. 15, а) и в аргоне (рис. 15, б). По мере перемещения ударно-волновой конфигу-
рации по поверхности угла сжатия развивается неустойчивость контактного разрыва, прояв-
ляющаяся в постепенном искривлении его формы, которое нарастает с удалением от тройной 
точки и приближением к поверхности обтекаемого тела. 

  

(а) (б) 

Рис. 15. Нестационарная неустойчивость контактного разрыва: (а) тестовый случай № 5; (б) те-
стовый случай № 9  
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На рисунках 16–18 показан сравнительный анализ одномерных распределений безраз-
мерной плотности, полученных с использованием схем 1–6. На иллюстрациях также пока-
заны экспериментальные данные из работы [30]. 

 
Рис. 16. Распределение безразмерной плотности по поверхности 
угла сжатия для тестового случая № 4 

 
Рис. 17. Распределение безразмерной плотности по поверхности 
угла сжатия для тестового случая № 5 
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Рис. 18. Распределение безразмерной плотности по поверхности 
угла сжатия для тестового случая № 9 

4. Заключение 

Получены результаты численного моделирования обтекания угла сжатия для условий 
набегающего воздушного или аргонового потока, при которых реализуются различные типы 
маховского отражения. Продемонстрированы ключевые газодинамические структуры, кото-
рые соответствуют теневым картинам, наблюдаемым в стендовом эксперименте. Выполнена 
оценка влияния параметров численной модели на получаемые картины ударно-волновых кон-
фигураций. 
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