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Abstract 

In this work, the distribution of a pulsed volume discharge with ultraviolet preionization in a 
high-speed structured flow within a rectangular channel of a shock tube (24×48 mm²) and its 
effect on the flow have been experimentally investigated. To create a stable gas-dynamic struc-
ture, including oblique shock waves and separation zones, a dielectric obstacle (6×2×48 mm³) 
was installed on the wall within the discharge gap. Using high-speed shadow visualization and 
synchronized recording of the plasma's integral optical radiation, it has been demonstrated that 
the discharge self-localizes, redistributing according to the instantaneous flow field into spatial 
plasma channels in a highly non-uniform flow. It has been shown that the primary mechanism 
of flow modification is shock-wave-based: rapid energy deposition in the localized plasma chan-
nels generates directional blast waves with front velocities up to 1200 m/s, which substantially 
modify the initial gas-dynamic structure. The obtained results demonstrate the possibility of 
controlled pulsed plasma action on high-speed flows through the targeted self-localization of the 
discharge in specific flow regions.  

Keywords: pulsed volume discharge, plasma self-localization, high-speed flow, discharge visu-
alization, gas-dynamic control. 

 

Gas-dynamic field of supersonic flow behind the shock wave undisturbed by discharge (a), correspond-
ing pattern of integral glow of nanosecond discharge in the flow (b), and shock-wave flow (blast 
waves) initiated by the discharge (c) in the corresponding flow 
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Аннотация 

В данной работе экспериментально исследовано распределение импульсного объёмного 
разряда с ультрафиолетовой предыонизацией в высокоскоростном структурированном 
течении в прямоугольном канале ударной трубы 24 × 48 мм2 и его воздействие на поток. 
Для создания стабильной газодинамической структуры, включающей косые скачки 
уплотнения и зоны отрыва, на стенку в разрядный промежуток установлено диэлектри-
ческое препятствие 6 × 2 × 48 мм3. Методами высокоскоростной теневой визуализации и 
синхронизированной регистрации интегрального оптического излучения плазмы пока-
зано, что разряд, самолокализуется, перераспределяясь в соответствии с мгновенным по-
лем течения в сильно неоднородном потоке в пространственные плазменные каналы. По-
казано, что основным механизмом воздействия на поток является ударно-волновой: 
быстрое энерговыделение в локализованных плазменных каналах генерирует направлен-
ные взрывные волны со скоростями фронта до 1200 м/с, которые существенно модифи-
цируют исходную газодинамическую структуру. Полученные результаты демонстри-
руют возможность управляемого импульсного плазменного воздействия на высокоско-
ростные течения, за счет целенаправленной самолокализации разряда в определенных об-
ластях течения. 

Ключевые слова: импульсный объемный разряд, самолокализация плазмы, высокоско-
ростное течение, визуализация разрядом, газодинамическое управление. 

1. Введение 

Управление высокоскоростными газодинамическими течениями с помощью плазмен-
ных воздействий представляет собой одно из перспективных направлений в аэрокосмической 
науке и технике. Исследования в этой области показывают, что эффективность плазменного 
воздействия на поток определяется не только величиной энерговложения, но и простран-
ственной конфигурацией при локализации плазмы в потоке. В последние годы активно раз-
виваются подходы к управлению неоднородными плазменными образованиями, способными 
целенаправленно модифицировать газодинамические структуры в определенных областях 
течения. 

Особое внимание уделяется проблеме пространственной локализации плазмы в усло-
виях высокоскоростного потока. Разрядная зона может располагаться в проблемных областях 
течений, с целью управления (аэродинамические течения) или в профилированных каналах 
трактов для эффективного воспламенения [13]. Стоит отметить, что важным направлением 
исследований является изучение взаимодействия разрядной плазмы с ударными волнами и 
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пограничными слоями [4]. Экспериментальные исследования показывают, что как субмик-
росекундные, так и разряды постоянного тока в неоднородном сверхзвуковом потоке могут 
не распределяется равномерно, а склоны к локализации в определенных зонах в зависимости 
от локальных параметров потока [5, 6]. Как показано в работе [5], даже в условиях относи-
тельно простых геометрий разряд имеет тенденцию к концентрации в прикатодных областях 
или в зонах с определенными градиентами скорости. При наличии геометрических неодно-
родностей или искусственно созданных препятствий пространственное распределение 
плазмы становится еще более сложным, что открывает возможности для целенаправленного 
управления локализацией разряда [6]. 

Значительные результаты достигнуты в формировании управляемой пространственной 
структуры плазмы и получены при использовании комбинированных воздействий. В работе 
[7] исследовался СВЧ-разряд с безыскровой лазерной инициацией в сверхзвуковом потоке, 
что позволило достичь протяженных нагретых областей с контролируемой геометрией для 
модификации ударных волн. Экспериментальные результаты показали, что такие технологии 
обеспечивают возможность создания локализованных плазменных областей в заданных точ-
ках потока, что существенно повышает эффективность воздействия на газодинамические 
структуры. 

Особый интерес представляет изучение механизмов самолокализации разряда в усло-
виях сильно неоднородного потока. Как отмечается в [8, 9, 10], взаимодействие ударных волн 
с геометрическими неоднородностями создает сложную картину градиентов скорости, дав-
ления и плотности, которые могут служить естественными областями пониженной плотно-
сти куда локализируется импульсная плазма, становясь «ловушками». В таких условиях раз-
ряд может концентрироваться в критических зонах течения, таких, как области отрыва 
пограничного слоя или зоны взаимодействия ударных волн, что позволяет значительно по-
высить эффективность управления потоком по сравнению с однородным распределением 
плазмы. 

Несмотря на значительные результаты исследований в области управления простран-
ственной структурой плазмы, остаются недостаточно изученными особенности распределе-
ния импульсного объемного разряда в сильно неоднородных высокоскоростных течениях. 
Известно, что в однородных средах разряд распределяется относительно равномерно, тогда 
как в неоднородных потоках могут наблюдаться эффекты самолокализации [6]. При этом ме-
ханизмы формирования пространственных плазменных структур в условиях сверхзвукового 
обтекания, а также их динамическое взаимодействие с ударно-волновыми конфигурациями 
требуют дальнейшего изучения [11]. 

После пространственной локализации плазмы, следующее на что следует обратить вни-
мание – это механизм энерговложения в поток [12, 13]. Современные подходы к плазмен-
ному управлению потоками можно классифицировать по типам разрядов: электродные раз-
ряды (импульсные, тлеющие), СВЧ-разряды и лазерные искры [1, 6, 7, 14]. Исследования 
последних лет показали, что эффективность плазменного воздействия напрямую зависит от 
геометрии энерговыделения, временных параметров импульса, а также степени неравновес-
ности плазмы [2, 13, 15]. В частности, в работе [13] продемонстрировано, что увеличение 
степени неравновесности газоразрядной плазмы приводит к нелинейному возрастанию эф-
фекта воздействия на параметры обтекания, что обусловлено комплексным влиянием как 
тепловых, так и плазменно-химических механизмов. 

В работах [8, 16] показано, что инфракрасная термография и теневые методы визуали-
зации позволяют установить взаимосвязь между газодинамическими и тепловыми процес-
сами при нестационарном обтекании тел. При этом особое значение придается анализу 
ударно-волновых процессов, генерируемых локальным энерговыделением в плазме 
[13, 16, 17]. 
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В настоящей работе представлены результаты экспериментального исследования рас-
пределения импульсного объемного разряда с ультрафиолетовой предыонизацией в структу-
рированном сверхзвуковом потоке. Особое внимание уделено пространственной локализа-
ции разряда в условиях неоднородного течения и возможности управляемой локализации 
плазменных областей в различных зонах течения. 

2. Постановка эксперимента  

Эксперименты проведены на однодиафрагменной ударной трубе УТРО-3 (рис. 1), пред-
назначенной, в частности, для исследования взаимодействия импульсных разрядов с неста-
ционарным высокоскоростным потоком. Установка состоит из камеры высокого давления, 
заполняемой гелием до 5 ÷ 9 атм и камеры низкого давления (канала) прямоугольного сече-
ния 24 × 48 мм2 длиной 3130 мм, откуда воздух откачивается до 10 ÷ 30 торр. В канал встроен 
рабочий участок (протяженностью 335 мм), который расположен в канале на расстоянии 
2100 мм от диафрагмы и оснащен кварцевыми окнами протяженностью 197 мм для оптиче-
ской диагностики внутренних течений. Диафрагма, установленная между секциями, при кри-
тическом перепаде давлений разрывается, что инициирует ударную волну с числом Маха от 
2 до 4 (диапазон в рамках данного исследования) и высокоскоростной поток за ней [18]. Па-
раметры квазистационарного потока воздуха рассчитываются по соотношениям Ренкина-
Гюгонио. 

В разрядной секции (рабочий участок) реализуется импульсный комбинированный раз-
ряд с ультрафиолетовой предыонизацией от плазменных листов. Предыонизация осуществ-
ляется скользящими разрядами, создающими плазменные листы протяженностью 100 мм и 
шириной 30 мм с плотностью электронов 1410en   см3 преимущественно в УФ-диапазоне 
(200 ÷ 400 нм). Основной энерговклад производится от конденсатора ёмкостью 2300 пФ, за-
ряжаемого до напряжения 20 ÷ 30 кВ. Временные параметры разряда включают фазу преди-
онизации плазменными листами ( 70pre   нс) и основную фазу объемного разряда  
( 150 200main    нс) с пиковым током maxI  до 1.2 кА. Приведённое электрическое поле в про-
межутке составляет 200 1000E N    Тд [19]. 

С целью исследования механизмов воздействия на газодинамические структуры в 
сверхзвуковом потоке использовалось диэлектрическое препятствие (2 × 48 × 6 мм³), установ-
ленное в области разрядного промежутка (рис. 1). Со стороны газодинамики его обтекание 
приводило к формированию структурированного течения с системой скачков уплотнения и 
отрывных зон. 

 

Рис. 1. Схема установки с диагностическим комплексом – ударная труба 
и две фотокамеры (2 ракурса), высокоскоростная камера Photron SA5 
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Импульсный разряд с наносекундным фронтом нарастания тока сопровождается быст-
рым (за время менее 1 мкс) повышением температуры и давления в зоне разряда, что обу-
словлено высоким значением вложенной в газ энергии в ограниченной области. В эту область 
поступает около 1 Дж энергии, что приводит к мгновенному повышению давления, темпера-
туры, энтальпии. Импульсный разряд может существенно изменять высокоскоростное тече-
ние в газодинамическом канале [6]. Локализация наносекундного разряда, инициируемого в 
сверхзвуковом течении за ударной волной, сильно зависит от мгновенного поля плотности 
тестируемого течения в разрядном (рабочем) промежутке. В работе [6] показано, что при раз-
ных режимах обтекания импульсный разряд перераспределяется вблизи препятствия со-
гласно мгновенному полю течения, а его локализация меняется в зависимости от изменения 
скорости течения – от сверхзвуковой к дозвуковой. Интенсифицированные плазменные ка-
налы, наблюдаемые, вблизи вставки, становятся источниками возмущений. Мгновенный 
ввод энергии приводит к скачкообразному увеличению давления, что способно существенно 
изменить высокоскоростное течение в газодинамическом канале. 

Импульсный разряд инициировался на различных участках газодинамического течения 
за ударной волной. Инициирование импульсного разряда достигалось изменением времен-
ной задержки на генераторе между запускающим сигналом, поступающим от пьезодатчика 
давления, и моментом инициирования разряда. 

Локализация наносекундного разряда в потоке определялась на основе интегральной 
регистрации свечения с двух ракурсов (см. рис. 1). Диагностика газодинамического течения 
в канале осуществлялось высокоскоростной камерой Photron SA5 (скорость регистрации – 
150000 кадров в секунду, экспозиция 1 мкс) с лазерной подсветкой ( 532   нм). Синхрони-
зация наносекундного разряда с микросекундными газодинамическими процессами позво-
ляет исследовать влияние на структуру течения. 

3. Результаты экспериментов 

Экспериментальные исследования показали, что при инициировании импульсного объ-
емного разряда с ультрафиолетовой предыонизацией (ИОР) в нестационарном высокоско-
ростном потоке за ударной волной наблюдается корреляция мгновенной структуры течения 
(рис. 2, а) при перераспределении свечения плазмы (рис. 2, б, в). Интегральная регистрация 
свечения ИОР в видимом диапазоне для чисел Маха ударной волны ув 2.0 4.0M    проде-
монстрировала хорошую повторяемость пространственного распределения плазмы, которое 
однозначно коррелирует с газодинамическим полем, зафиксированным методами высоко-
скоростной теневой визуализации. 

В сверхзвуковом режиме обтекания, когда поток в ударной трубе представляет собой 
воздушную пробку сжатого газа, объемная фаза разрядной плазмы концентрируется в об-
ласть пространственных скачков, визуализируя форму конфигураций косого скачка уплотне-
ния и веера Прандтля-Мейера.  

Поверхностная плазма скользящего разряда на нижней стенке стягивается в коротко-
живущий высокоэнергетичный плазменный канал длиной ~ 30 мм. Этот канал формируется 
в приповерхностном межэлектродном зазоре поперек потока, вдоль задней кромки препят-
ствия, преимущественно стягиваясь с участка нижнего плазменного листа. Такая локализа-
ция в подветренной области непосредственно обусловлена наличием зоны отрывного тече-
ния с естественно низкой плотностью.  

При снижении скорости потока и переходе к трансзвуковым режимам картина локали-
зации существенно меняется. Пространственные неоднородности плотности в межэлектрод-
ном объеме (рис. 2, д) приводят к стягиванию разряда в каналы по объему или по боковым 
стеклянным поверхностям, визуализируя структуру пограничного слоя (рис. 2, е, ж). Изме-
нение поля обтекания препятствия вызывает формирование двух отдельных плазменных ка-
налов нитевидной формы. Первый канал локализуется в подветренной зоне отрыва, а второй 
– на наветренной стороне, вдоль передней кромки препятствия. Таким образом, локализация 
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наносекундного разряда и количество плазменных каналов напрямую определяются текущей 
конфигурацией течения и наличием зон с пониженной плотностью во всем межэлектродном 
зазоре. 

 

Рис. 2. Газодинамическое поле течения за ударной волной – сверхзвуковое (а) и трансзвуковое 
(д), соответствующая картина интегрального свечения наносекундного разряда в потоке с двух 
ракурсов (бв) и (еж) и ударно-волновое течение (взрывные волны) от разряда (г) и (з) в со-
ответствующем потоке 

Наносекундный разряд способен к адаптивной самолокализации в областях с мини-
мальной плотностью газа: зоны отрыва перед препятствием или за ним, области разрежения 
перед фронтом ударной волны. В результате разряд не распределяется равномерно по объ-
ему, а концентрируется, формируя интенсивные плазменные каналы. Это приводит к резкому 
увеличению удельного энерговклада в данных областях локализации, который может на по-
рядок превышать средний по объему. Именно эти области и становятся мощными источни-
ками направленных ударных возмущений. 

Экспериментально было получено, что генерируемые разрядом взрывные волны обла-
дают высокой начальной скоростью фронта, достигающей 1200 м/с в направлении, перпен-
дикулярном основному потоку (см. рис. 2, г – при сверхзвуковом потоке; рис. 2, з – при 
трансзвуковом потоке). Пространственная конфигурация этих волн является полуцилиндри-
ческой и однозначно определяются локализацией плазмы вблизи препятствия. 

Была получена зависимость временных характеристик воздействия взрывных волн от 
импульсного разряда на поток от его скорости. Установлено, что длительность ударно-вол-
нового возмущения, то есть время, за которое исходная структура течения восстанавливается 
после энерговклада, обратно пропорциональна скорости потока (рис. 3). В сверхзвуковом по-
токе (скорость потока 900 м/с) это время составляет 20 ÷ 30 мкс, тогда как при снижении ско-
рости до дозвуковых значений длительность воздействия возрастает до 120 ÷ 130 мкс (при 
200 м/с). При полной остановке потока длительность ударно-волнового процесса может до-
стигать 600 мкс. Инерция высокоскоростного потока активно противодействует развитию 
возмущения, быстро «вымывая» разогретую область и восстанавливая картину установивше-
гося обтекания. 

Взаимодействие взрывных волн с элементами структурированного течения имеет слож-
ный характер. Наблюдается слияние фронтов взрывных волн с стационарными скачками 
уплотнения, их отражение от стенок канала и контактных поверхностей, что приводит к вре-
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менному изменению конфигурации всего течения в окрестности препятствия. Таким обра-
зом, ударно-волновой механизм позволяет не локальное (точечное) воздействие, а интеграль-
ное перестроение поля течения в области, значительно превышающей размеры исходного 
плазменного образования (энергоподвода). 

 

Рис. 3. Зависимость длительности восстановления течения после воздействия 
импульсного объемного разряда в зависимости от скорости набегающего по-
тока 

4. Заключение 

Экспериментально показано, что импульсный объемный разряд с УФ-предыонизацией 
в нестационарном высокоскоростном потоке в канале с препятствием не распределяется од-
нородно, а самолокализуется согласно полю течению. Пространственное распределение 
плазмы однозначно коррелирует с мгновенной газодинамической структурой течения, кон-
центрируясь преимущественно в областях с пониженной плотностью (зоны отрыва, области 
разрежения).  

В сильно неоднородном потоке разряд стягивается в высокоэнергетичные плазменные 
каналы вдоль поверхностей. Локализация этих каналов напрямую определяются режимом 
обтекания (сверхзвуковое, трансзвуковое) и наличием диэлектрического препятствия. 

Показано, что установленное препятствие позволяет контролировать локализацию им-
пульсного разряда. 

Основным механизмом влияния разряда на поток является ударно-волновой. Быстрый 
(субмикросекундной длительности) энерговклад в локализованных каналах генерирует 
направленные взрывные волны со скоростью фронта до 1200 м/с. Их пространственная кон-
фигурация (полуцилиндрическая) однозначно определяется областью локализации плазмы. 

Взаимодействие взрывных волн с квазистационарными скачками уплотнения приводит 
к перестройке поля течения в области, значительно превышающей размеры исходного плаз-
менного канала. Это демонстрирует возможность управляемого импульсного воздействия 
для модификации сложных газодинамических структур. 
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