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Abstract 

For experimental conditions on heat transfer in underexpanded dissociated air jets, three water-
cooled copper cylindrical models with a diameter of 20 mm and various geometries (flat-end, 
spherical nose, rounded-edge, and flat nose) were numerically simulated using the Navier-
Stokes equations. The flow around these models was simulated by multicomponent, nonequi-
librium dissociated air, taking into account chemical reactions in the flow and on the cold sur-
face. The studies were conducted in underexpanded high-enthalpy air jets flowing from water-
cooled conical nozzles with exit cross-section diameters of 40 and 50 mm at a submerged 
pressure of 8.5 hPa, an air flow rate of 3.6 g/s, and an anode power of the plasma torch's RF 
generator of 64 kW. Heat fluxes in the nose of the models were measured using flow-through 
stationary calorimeters with a flat or spherical copper heat-receiving surface. The distance be-
tween the forward stagnation point of the model and the nozzle exit was 30 mm in all experi-
ments. Satisfactory agreement was achieved between the experimental and calculated heat flux 
densities at the stagnation point for an effective heterogeneous recombination coefficient of 
γ = 0.1 and a model of the staged heterogeneous kinetics of the interaction of dissociated air 
with a copper surface. Both models use one free parameter, varying which allows heat flux 
densities in the vicinity of the stagnation point to be obtained that are identical to the experi-
mental values and to each other, although in the second model, this parameter, unlike in the 
first, has a clear physical meaning. 

Keywords: inductive RF plasmatron, supersonic jets of dissociated air, heat fluxes at the stag-
nation point, numerical modelling, catalytic recombination of atoms.   
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Аннотация 

Для условий экспериментов по теплообмену в недорасширенных струях диссоцииро-
ванного воздуха для трех медных водоохлаждаемых цилиндрических моделей диамет-
ром 20 мм различной геометрии: с плоским торцом, со сферической носовой частью, со 
скругленной кромкой и плоским притуплением носовой части выполнено численное 
моделирование их обтекания в рамках уравнений Навье  Стокса многокомпонентным 
неравновесно диссоциированного воздуха с учетом химических реакций в потоке и на 
холодной поверхности. Исследования проводились в недорасширенных струях высоко-
энтальпийного воздуха, истекающих из водоохлаждаемых конических сопел с диамет-
рами выходных сечений 40 и 50 мм при давлении в затопленном пространстве 8.5 гПа, 
расходе воздуха 3.6 г/c и мощности ВЧ-генератора плазмотрона по анодному питанию 
64 кВт. Тепловые потоки в носовой части моделей в экспериментах измерялись проточ-
ными стационарными калориметрами с плоской или сферической тепловоспринимаю-
щей поверхностью из меди. Расстояние между передней критической точкой моделей и 
срезом сопла во всех экспериментах составляло 30 мм. Получено удовлетворительное 
согласие экспериментальных и расчетных данных по плотностям тепловых потоков в 
точке торможения при эффективном коэффициенте гетерогенной рекомбинации γw = 0.1 
и модели постадийной гетерогенной кинетики взаимодействия диссоциированного воз-
духа с поверхностью меди. В обеих моделях используется по одному свободному пара-
метру, вариация которых позволяет получить плотности тепловых потоков в окрестно-
сти точки торможения одинаковые с экспериментальными значениями и друг с другом, 
хотя во второй модели этот параметр, в отличие от первой, имеет ясный физический 
смысл. 

Ключевые слова: индукционный ВЧ-плазмотрон, сверхзвуковые струи диссоциирован-
ного воздуха, тепловые потоки в точке торможения, численное моделирование, катали-
тическая рекомбинация атомов. 

1. Введение 

Индукционные ВЧ-плазмотроны используются для аэрофизических исследований, в 
том числе для испытаний образцов теплозащитных материалов с целью определения их 
термохимической стойкости или каталитических свойств их поверхности по отношению к 
гетерогенной рекомбинации атомов. Преимущества ВЧ-плазмотронов заключаются в том, 
что они позволяют в непрерывном режиме работы получать до- и сверхзвуковые потоки чи-
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стой низкотемпературной плазмы с высокой стабильностью и хорошей воспроизводимо-
стью. Хотя в лабораторных высокоэнтальпийных установках невозможно полностью моде-
лировать натурные условия аэродинамического нагрева поверхности тела при входе в атмо-
сферу, однако возможно локальное моделирование условий теплопередачи от пограничного 
слоя к критической точке на поверхности [24]. 

Широкие возможности для локального моделирования аэродинамического нагрева в 
дозвуковых струях высокоэнтальпийного воздуха предоставляет 100-киловаттный ВЧ-
плазмотрон ВГУ-4 (ИПМех РАН) [1, 6]. Полную энтальпию и давление торможения можно 
плавно регулировать в диапазонах 5 ÷ 50 МДж/кг и 0.02 ÷ 1 атм. При фиксированных значе-
ниях мощности ВЧ-генератора и давления в барокамере градиент скорости на внешней гра-
нице пограничного слоя около модели можно варьировать за счет изменений формы моде-
лей и геометрии разрядного канала, применяя водоохлаждаемые конические насадки с 
различными диаметрами выходных сечений.  

Цель данной работы заключается в численном исследовании теплообмена водоохла-
ждаемых моделей различной формы со сверхзвуковыми струями диссоциированного возду-
ха для условий, реализуемых на ВЧ-плазмотроне ВГУ-4 при работе с коническими соплами 
с диаметром выходных сечений 40 и 50 мм. Тепловые потоки рассчитывались в окрестно-
сти критической точки на трех медных водоохлаждаемых цилиндрических моделях диамет-
ром 20 мм: с плоским торцом, со сферической носовой частью, со скругленной кромкой и 
плоским притуплением носовой части при использовании различных граничных условий на 
поверхностях датчиков. 

2. Эксперименты на плазмотроне ВГУ-4 

Эксперименты по теплообмену проводились в Институте проблем механики РАН 
имени А. Ю. Ишлинского на 100-киловаттном высокочастотном индукционном плазмот-
роне ВГУ-4 [1, 6]. Тепловые потоки в недорасширенных струях диссоциированного воздуха 
были получены в лаборатории взаимодействия плазмы и излучения с материалами на трех 
медных водоохлаждаемых цилиндрической моделях диаметром 20md   мм (рис. 1): с плос-
ким торцом (рис. 1, а), со сферической носовой частью (рис. 1, б), со скругленной кромкой и 
плоским притуплением носовой части (рис. 1, в) и опубликованы в [8]. 

При численном решении задачи граничными условиями для диффузионных потоков 
атомарных и молекулярных компонентов на торцевой поверхности модели использовались 
следующие соотношения для модели Гуларда [7]:  
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Принималось, что поверхность модели имеет заданную температуру wT  и характеризуется 
эффективным коэффициентом каталитической рекомбинации атомов w ; Am   молекуляр-
ный вес атомарной компоненты; Ac   массовая концентрация атомарной компоненты; k   
постоянная Больцмана;  – поверхностная плотность воздушной смеси, а для модели поста-
дийной гетерогенной кинетики выражения, приведены в [9, 10]. 

Результаты сравнения экспериментальных данных и расчетов для модели с граничны-
ми условиями с показателем w  по модели Гуларда приведены в [8]. 

Для измерений теплового потока в носовой части моделей устанавливались проточ-
ные стационарные датчики (калориметры) [5] с плоской или сферической тепловосприни-
мающей поверхностью из меди. Диаметр тепловоспринимающей поверхности калоримет-
ров составлял 11.7 ÷ 11.8 мм.  

Эксперименты и расчеты по определению тепловых потоков в сверхзвуковых режи-
мах плазмотрона ВГУ-4 проводились в недорасширенных струях высокоэнтальпийного 
воздуха, истекающих из водоохлаждаемых конических сопел с диаметрами выходных сече-
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ний 40D   и 50 мм при давлении в затопленном пространстве 8.5P   гПа, расходе возду-
ха 3.6G   г/c и мощности ВЧ-генератора плазмотрона по анодному питанию 64N   кВт. 
Расстояние между передней критической точкой модели и срезом сопла во всех экспери-
ментах составляло 30Z   мм.  

Рис. 1. Медные водоохлаждаемые цилиндрические модели диаметром 20md   мм, 
оснащенные проточными стационарными датчиками теплового потока (калориметрами) 

3. Численное моделирование 

Для условий экспериментов на ВЧ-плазмотроне ВГУ-4 численно решались задачи об-
текания моделей трех различных форм с холодной поверхностью ( 300wT   K) сверхзвуко-
выми неравновесными струями диссоциированного воздуха в рамках уравнений Навье – 
Стокса в интервале 0 1w  . Применялась технология, основанная на комплексе программ 
численного интегрирования уравнений Навье  Стокса [11, 12] и специальных программ-
генераторов, взаимодействующих с базами данных по термодинамическим и переносным 
свойствам индивидуальных газовых веществ. При численном моделировании учитывались 
11 нейтральных и ионизованных компонентов смеси воздушной плазмы: O, N, O2, N2, NO, 
O+, N+, NO+, 2O , 2N  и e. Термодинамические и термохимические данные для рассматри-
ваемых компонентов брались из [13]. Числовые значения констант химических реакций, 
протекающих в высокотемпературной воздушной смеси, заимствованы из [1417]. Транс-

  
а б 

 
в 



Сахаров В.И. «Исследование влияния форм моделей и различных граничных условий на их поверхностях…» 

5 

портная модель необходима для вычисления вязких потоков массы компонентов, импульса 
и энергии в многокомпонентном газе. Молярные диффузионные потоки определялись из 
соотношений Стефана  Максвелла для частично ионизованной смеси газа с использовани-
ем условий квазинейтральности смеси [18]. Термодиффузией пренебрегалось. Для вычис-
ления коэффициентов вязкости и теплопроводности газовой смеси использовались прибли-
женные формулы Уилки  Васильевой [19].  

Бинарные коэффициенты диффузии вычислялись по двухпараметрической интерпо-
ляционной формуле [20] через сечения упругих столкновений диффузионного типа атомов 
и молекул между собой и с ионами. Взаимодействие заряженных частиц описывается в 
приближении парных столкновений с использованием экранированного кулоновского по-
тенциала. Для расчета интегралов столкновений этого типа используются аппроксимацион-
ные зависимости, приведенные в [21]. Числа Шмидта для всех компонентов, необходимые 
при расчете коэффициентов вязкости и теплопроводности, вычислялись в предположении, 
что отношение значений всех сечений столкновений «вязкостного» типа к соответствую-
щим сечениям «диффузионного» типа равно 1.1. 

4. Результаты экспериментов и сравнение с расчетами 

В работе [8] приведено сравнение экспериментальных и расчетных картин обтекания 
недорасширенными струями воздушной плазмы цилиндрических моделей со скругленной  
кромкой и плоским притуплением носовой части (см. рис. 1, в) и со сферической носовой 
частью (см. рис. 1, б). Наблюдалось приемлемое совпадение экспериментальных и расчет-
ных картин обтекания моделей как около лобовой части, так и у боковой поверхности мо-
делей. Для модели с плоским торцом подобное качественное сравнение картин обтекания 
на различных режимах проводилось ранее [6].  

Рассчитанные для модели граничных условий при 0.1w   и приведенные в [8] плот-
ности тепловых потоков в точке торможения для трех форм моделей при высокоскоростном 
обтекании сравнивались с измеренными тепловыми потоками. 

В таблицах 1 и 2 приведены значения плотностей полных тепловых потоков в окрест-
ности критической точки для модели постадийной гетерогенной кинетики (столбцы 4), экс-
периментальные значения (столбцы 2) и рассчитанные по модели Гуларда (столбцы 3) [8]. 
Все расчеты с использованием модели Гуларда проведены для значения параметра 0.1w  , 
а для модели постадийной гетерогенной кинетики при S0 = 4.14 e, как отвечающие лучшему 
совпадению расчетных и экспериментальных значений по теплообмену. Как отмечено в ра-
ботах [4, 12, 2223], в которых тепловые потоки к моделям с торцевыми затуплениями из-
мерялись с точностью до 5 %, как в сторону их завышения, так и занижения. Отметим, что 
значения тепловых потоков, измеренные в точке торможения, для всех рассмотренных ва-
риантов, представленных в таблицах 1 и 2, хорошо согласуются с расчетными значениями 
для двух моделей граничных условий. 

5. Заключение 

Для условий экспериментов по теплообмену на установке ВГУ-4 в сверхзвуковых вы-
сокоэнтальпийных недорасширенных струях воздуха для трех цилиндрических моделей 
диаметром 20 мм из меди с плоским торцом, со сферической носовой частью, со скруглен-
ной кромкой и плоским притуплением носовой части рассчитаны плотности тепловых по-
токов в носовой части при использовании модели Гуларда и модели постадийной гетеро-
генной кинетики взаимодействия диссоциированного воздуха с поверхностью меди. При 
этом отклонение экспериментальных значений от расчетных находилось в пределах 7 ÷ 8 %, 
что допустимо с учетом оценки погрешности метода измерений с использованием стацио-
нарных проточных датчиков теплового потока в 5 ÷ 10 %.  
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Таблица 1 

Тепловые потоки к холодным медным поверхностям моделей различной формы для различ-
ных граничных условий на их поверхностях в недорасширенных струях воздушной плазмы, 
истекающих из водоохлаждаемого конического сопла диаметром 40 мм 

Модель 
Измеренная плотность 
теплового потока expq , 

Вт/см2 

Расчетная плотность 
теплового потока  

calcq , Вт/см2 

Расчетная плотность 
теплового потока 
Вт/см (S0 = 4.14 e) 

Цилиндр диаметром 20 мм 
с плоским торцом 

509 479.88 477.78 

Цилиндр диаметром 20 мм 
со скругленной кромкой и 

плоским притуплением 
носовой части 

537 547.11 550.72 

Цилиндр диаметром 20 мм 
со сферической  
носовой частью 

587 558.64 559.88 

Таблица 2 

Тепловые потоки к холодным медным поверхностям моделей различной формы для различ-
ных граничных условий на их поверхностях в недорасширенных струях воздушной плазмы, 
истекающих из водоохлаждаемого конического сопла диаметром 50 мм 

Модель 
Измеренная плотность 
теплового потока expq , 

Вт/см2 

Расчетная плотность 
теплового потока 
Вт/см2  ( 0.1w  ) 

Расчетная плотность 
теплового потока 

Вт/см  (S0 = 4.14 e15) 

Цилиндр диаметром 20 мм 
с плоским торцом 

342 370.12 373.98 

Цилиндр диаметром 20 мм 
со скругленной кромкой и 

плоским притуплением 
носовой части 

386 441.59 450.09 

Цилиндр диаметром 20 мм 
со сферической  
носовой частью 

495 468 480.15 
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