Numerical Simulation of Hysteresis in Flow Around an Axisymmetric Nozzle

F. A. Maksimov^{1,2}

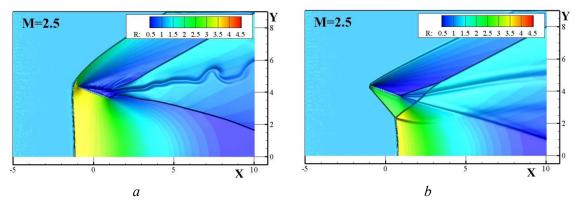
¹Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia guv@mail.ru

²Institute of Computer Aided Design, Russian Academy of Sciences, Moscow, Russia f a maximov@mail.ru

Abstract

The paper presents the results of numerical simulation of axisymmetric flows near a converging nozzle by a supersonic flow of a perfect gas. A multi-block computational technology is applied using local curved grids adapted to the surface of bodies, which have finite overlap regions with a global rectangular grid for the entire computational domain. Viscous boundary layers are resolved on local grids using the Navier-Stokes equations, and the effects of aerodynamic interference of accompanying shock-wave structures are described within the framework of the Euler equations. In the areas of grid overlap, interpolation of functions is used up to the boundaries of the transition from one grid to another. With a sequential increase or decrease in the Mach number of the incident supersonic flow, a qualitative restructuring of the flow structure near the nozzle is detected - either a detached shock wave and a subsonic flow zone in front of the nozzle, or oblique shocks are formed. A hysteresis has been revealed, which is expressed in the fact that in a certain range of Mach numbers, the flow structure and aerodynamic load on the nozzle depend not only on the value, but also on the history of the change in the Mach number. Two flow variants in the flow hysteresis region at a Mach number of M = 2.5 are shown in the figure. The possibility of changing the flow structure by introducing density inhomogeneity into the incident flow is shown.

Keywords: axisymmetric nozzle, shock-wave structures, aerodynamic characteristics, hysteresis, flow structure control.



Flow at M = 2.5 with a detached shock wave (a) and with oblique shock waves (b)

УДК 533.6.011.5: 533.6.011.72:519.634

Численное моделирование гистерезиса при обтекании осесимметричного сопла

Ф. А. Максимов^{1,2}

¹НИИ Механики МГУ им. М.В. Ломоносова, Россия, Москва, 119192, Мичуринский проспект, д.1 ²Институт автоматизации проектирования РАН, Россия, Москва, 123056, ул. 2-ая Брестская, д.19/18 f a maximov@mail.ru

Аннотация

Представлены результаты численного моделирования осесимметричных сверхзвуковых ламинарных течений около сужающего сопла. Применена многоблочная вычислительная технология с использованием локальных адаптированных к поверхности тел криволинейных сеток, имеющих конечные области перекрытия с глобальной прямоугольной сеткой для всей расчетной области. Вязкие пограничные слои разрешаются на локальных сетках с использованием уравнений Навье-Стокса, а эффекты аэродинамической интерференции сопутствующих ударно-волновых структур описываются в рамках уравнений Эйлера. В областях перекрытия сеток применяется интерполяция функций до границ перехода от одной сетки к другой. При последовательном увеличении или уменьшении числа Маха набегающего сверхзвукового потока обнаружена качественная перестройка структуры течения около сопла – образуются либо отошедшая ударная волна и дозвуковая зона течения перед соплом, либо косые скачки. Выявлен гистерезис, выражающийся в том, что в определенной области чисел Маха структура течения и аэродинамическая нагрузка на сопло зависят не только от величины, но и от предыстории изменения числа Маха. Показана возможность изменения структуры течения с помощью введения в набегающий поток неоднородности по плотности.

Ключевые слова: осесимметричное сопло, ударно-волновые структуры, аэродинамические характеристики, гистерезис, управление структурой течения.

1. Введение

Из экспериментальных исследований [1] известно, что в сужающемся коническом сопле, при его определенных параметрах, возможно образование двух схем течения — с отошедшим скачком перед соплом и с косыми скачками уплотнения, присоединенным к передним кромкам сопла. Образование той или иной схемы течения зависит от истории ее построения. В частности, в [1] экспериментально показано, что если при обтекании с первоначально меньшим числом Маха около сопла реализуется течение с отошедшим скачком, то и при увеличении числа Маха в некотором диапазоне эта схема обтекания будет сохраняться. Однако если это же сопло мгновенно поместить в поток с большим числом Маха, то образуется схема с косым скачком.

В данной работе выполнены расчеты обтекания осесимметричного сужающего сопла при изменении числа Маха. При проведении расчетов в качестве начальных данных используются либо значения газодинамических параметров в набегающем потоке, либо решение, полученное ранее с близким значением параметра. В последнем случае начальное поле течения определяет первоначальную схему обтекания. Заданная схема обтекания в процессе установления могла либо сохраняться, либо разрушалась с образованием другой схемы

обтекания. Таким образом, определяется критическое значение параметра, при котором происходит перестройка схемы обтекания. Проведение расчетов с изменением параметра в двух направлениях позволяет определить область, когда характеристики имеют неоднозначное значение. Существование двух разных вариантов течения при одинаковом наборе определяющих параметров, как правило, означает гистерезисное изменение характеристик течения от этих параметров. Выявление областей гистерезиса и физических причин этого явления имеют большее значение, как для однозначного определения аэродинамических свойств обтекаемых тел, так и формирования способов управлять структурой течения.

2. Метод численного моделирования и постановка задачи

В работе [2] реализован метод моделирования обтекания набора тел. Метод основан на многосеточной технологии. Для внешней области течения строится регулярная сетка с прямоугольными ячейками. Данная сетка не связана с обтекаемыми телами, более того так как она равномерная и описать на ней развитие тонких вязких слоев не представляется возможным, то на данной сетке решаются уравнения Эйлера. На данную сетку накладывается набор криволинейных сеток, связанных с поверхностью обтекаемых тел. При построении сеток около тел, каждая из которых строится только в небольшой окрестности около поверхности тела, узлы около поверхности сгущаются для возможности описания вязкого пограничного слоя. На данной сетке решаются уравнения Навье — Стокса в приближении тонкого слоя. Граничные условия на внешней границе для сеток около обтекаемых тел определяются из решения на внешней сетке. В свою очередь, значения газодинамических функций в узлах внешней прямоугольной сетки, которые попадают во внутреннюю область сеток около тел, после каждого шага интегрирования по времени также пересчитываются. Изначально не предполагается, что какие-либо узлы могут совпадать и пересчет газодинамических функций с одной сетки на другую производится с помощью интерполяции.

Нестационарные уравнения Навье – Стокса в приближении тонкого слоя для осесимметричного течения сжимаемого газа в безразмерной форме в криволинейной системе координат $\xi = \xi(x, y)$; $\eta = \eta(x, y)$ имеют вид

$$\frac{\partial}{\partial \tau} \frac{y \mathbf{U}}{J} + \frac{\partial}{\partial \xi} \frac{\xi_{x} y \mathbf{E} + \xi_{y} y \mathbf{F}}{J} + \frac{\partial}{\partial \eta} \frac{\eta_{x} y \mathbf{E} + \eta_{y} y \mathbf{F}}{J} = \frac{\mathbf{H}}{J} + \frac{\partial}{\partial \eta} \frac{y \mathbf{S}}{J},$$

$$\mathbf{U} = \begin{cases} \rho \\ \rho u \\ \rho v \\ e \end{cases}; \quad \mathbf{E} = \begin{cases} \rho u \\ \rho u v \\ \rho u v \\ (e+p)u \end{cases}; \quad \mathbf{F} = \begin{cases} \rho v \\ \rho u v \\ \rho v^{2} + p \\ (e+p)v \end{cases}; \quad \mathbf{H} = \begin{cases} 0 \\ 0 \\ p \\ 0 \end{cases}; \quad \mathbf{S} = \frac{\mu}{\text{Re}} \begin{cases} 0 \\ m_{1} u_{\eta} + m_{2} \eta_{x} \\ m_{1} v_{\mu} + m_{2} \eta_{y} \\ m_{3} \end{cases},$$

где
$$m_1 = \eta_x^2 + \eta_y^2$$
; $m_2 = \frac{1}{3} \Big[\eta_x u_\eta + \eta_y v_\eta \Big]$; $m_3 = m_1 \Bigg[\frac{\gamma}{\gamma - 1} \frac{1}{\Pr} T_\eta + \frac{\partial}{\partial \eta} \frac{u^2 + v^2}{2} \Bigg] + m_2 \Big[\eta_x u + \eta_y v \Big]$

Здесь t – время; ρ – плотность; (u,v) – составляющие вектора скорости V соответственно в направлениях (x,y). Ось x симметрии течения направлена вдоль оси сопла и вектора скорости набегающего потока, y – расстояние от оси симметрии. p – давление; e – полная энергия единицы объема газа, которая для совершенного газа может быть представлена в виде

$$e = \rho \left(\varepsilon + \frac{u^2 + v^2}{2} \right),$$

где $\varepsilon = \frac{1}{\gamma - 1} \frac{p}{\rho}$ — внутренняя энергия газа; γ — показатель адиабаты.

Безразмерные переменные определены через размерные, которые обозначены штрихом «/», следующим образом:

$$t = \sqrt{\frac{p'_{o}}{\rho'_{o}}} \frac{t'}{L'}; \ \mathbf{X} = \frac{\mathbf{X}'}{L'}; \ \mathbf{V} = \sqrt{\frac{\rho'_{o}}{p'_{o}}} \mathbf{V}'; \quad \rho = \frac{\rho'}{\rho'_{o}}; \quad p = \frac{p'}{p'_{o}}; \quad T = \frac{T'}{T'_{o}}; \quad \mu = \frac{\mu'}{\mu'_{o}}$$

Нижний индекс «₀» означает значение параметра в невозмущенном потоке; L' – характерный размер; $\mathbf{X} = (x, y)$; $\mathbf{V} = (u, v)$.

Предполагается, что число Прандтля $\Pr = \mu c_p/\lambda$ постоянно. Здесь c_p — коэффициент теплоемкости; λ — коэффициент теплопроводности; μ — коэффициент вязкости. $\operatorname{Re} = \left(\sqrt{p_o'}\rho_o'L'\right)/\mu_o'$ — число Рейнольдса. Систему дифференциальных уравнений дополняет уравнение состояния: $p = \rho RT$, где T—температура, R—газовая постоянная. В безразмерном виде уравнение состояния $p = \rho T$.

Коэффициенты матрицы преобразования могут быть вычислены по следующим формулам:

$$\xi_x = Jy_\eta$$
; $\xi_y = -Jx_\eta$; $\eta_x = -Jy_\xi$; $\eta_y = Jx_\xi$

Здесь J – есть якобиан преобразования, который определяется по формуле

$$J = \left(x_{\xi}y_{\eta} - x_{\eta}y_{\xi}\right)^{-1}$$

Использование обобщенного преобразования позволяет построить равномерную сетку в виде единичного квадрата. Коэффициенты матрицы преобразования при заданном распределении узлов в физической области вычисляются с использованием центральных разностей. При выводе приведенной системы уравнений предполагается, что координатные линии ξ = const ориентированы по нормали к поверхности тела, и производные по направлению η фактически соответствуют производным вдоль локальных нормалей к поверхности тела. Это обеспечивает, что при вычислении диссипативного члена учитываются вторые производные по нормали к поверхности тела.

Рассматривается осесимметричное обтекание равномерным сверхзвуковым потоком газа сужающегося сопла. На рис. 1, *а* изображены границы внешней прямоугольной расчетной области ABCD с помещенным внутрь телом и внешней границей сетки, построенной около этого тела. Прямоугольная сетка имеет размерность 1001 узел по координате X и 601 по координате Y. В силу того, что рассматривается сверхзвуковое обтекание, на границе AD и AB задаются условия в набегающем потоке, на границе DC – условия симметрии течения, на границе BC – мягкие граничные условия с равенством нулю производной от газодинамических параметров. Предполагается, что внешние границы расположены на достаточном удалении от сопла.

Пластина, задающая сужающее сопло, моделируется эллипсом с отношением полуосей 0.05 (рис. 1, δ). Размер большой полуоси выбран в качестве характерного размера. Пластина (продольный размер пластины 2.) по отношению к набегающему потоку наклонена на угол 20 градусов и расстояние от центра эллипса до оси симметрии течения 4. Сетка около эллипса строится с помощью функции Жуковского, что позволяет обеспечить ортогональность соответствующих координатных линий к контуру тела. Внешняя граница расположена на расстоянии 0.2 от поверхности тела. Размерность сетки 181 узел вдоль контура тела и 41 узел по нормали. На поверхности пластины ставятся условия прилипания, а на внешней границе параметры течения определяются через параметры на внешней сетке.

Решение получается методом установления. Используется известная разностная схема МакКормака — явная схема второго порядка аппроксимации. В [3] приведены примеры использования данной схемы при решении задач внешнего обтекания. Особенностью расчетов

по многоблочной технологии является интегрирование с общим шагом по времени на внешней расчетной сетке, т.е. выбирается минимальный шаг интегрирования по времени из условия устойчивости по всей области расчета. Это не является существенным ограничением, так как сетка равномерная. А при интегрировании на сетках около тел используется локальный шаг по времени, т.е. в каждом узле расчетной сетки шаг по времени выбирается из местных условий. Это обеспечивает более быстрое распространение возмущений при использовании неравномерной сетки, а, следовательно, и установление.

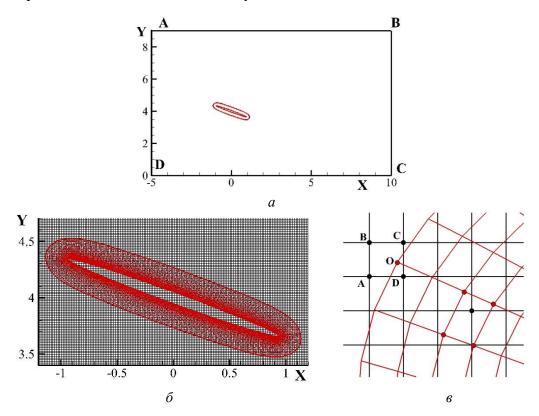


Рис. 1. Расчетная область (a), сетка около обтекаемого тела (δ) и к построению интерполяционных соотношений для узлов на границе внутренней области (ϵ)

Для того, чтобы решения на внешней сетке и сетке около тела связать в единое целое, после выполнения шага интегрирования значения газодинамических функций на внешней границе L сетки около тела путем интерполяции определяются из решения, получаемого на внешней сетке. Так как используется двухшаговая разностная схема [3], то аналогичная процедура выполняется и для соседнего с границей L слоя узлов. В то же время решение во всех узлах внешней сетки, попадающих внутрь области определения решения сетки около тела, заменяется решением, получаемым на данной сетке.

При пересчете значений газодинамических функций с одной сетки на другую используется интерполяция. В рассматриваемом двумерном случае интерполяция реализована в следующем виде. Вначале определяется ячейка ABCD, в которой расположена точка О (рис. $1, \varepsilon$). Значения функций в точке О определяются через значения функций в узлах A, B, C и D. Значение функции f в узле О можно определить через ее значения в любых трех узлах, для определенности, пусть это узлы B, A, D, по интерполяционной формуле

$$f_{\rm O} = f_{\rm A} + \alpha \cdot (f_{\rm B} - f_{\rm A}) + \beta \cdot (f_{\rm D} - f_{\rm A})$$
, где $\alpha = \frac{|{\rm AO} \times {\rm AB}|}{|{\rm AD} \times {\rm AB}|}$, $\beta = \frac{|{\rm AO} \times {\rm AD}|}{|{\rm AB} \times {\rm AD}|}$

Для того чтобы учесть значение функции в узле C, можно аналогично выразить $f_{\rm O}$ через ее значения в точках другой тройки узлов, например, D, C и B. Окончательное выражение

для $f_{\rm O}$ берется как среднее арифметическое величин по четырем вариантам выбора угловой точки. Коэффициенты интерполяции определяются для всех узлов на контуре L и соседнем к нему. Для узлов равномерной сетки, попадающих внутрь сеток, около тел проводится аналогичная процедура и определяются соответствующие коэффициенты интерполяции.

Определяющими безразмерными параметрами задачи являются: число Маха М набегающего потока, число Рейнольдса Re, показатель адиабаты γ . Все расчеты выполнены при $\gamma=1.4$ и числе Re = 10^5 , определенном по скорости звука в набегающем потоке. Течение предполагается ламинарным.

Расчеты проводились при различных значениях числа Маха. Численные решения строятся методом установления при фиксированном числе Маха M. Критерием установления является выход на стационарное решение. В качестве начальных данных может использоваться течение с параметрами во всех узлах, соответствующих параметрам в набегающем потоке. Для учета эффекта непрерывного изменения числа Маха используется тактика пошаговой коррекции граничных условий. После установления решения при очередном фиксированном значении M, на входной границе расчетной области добавляется малое приращение ΔM и запускается новый процесс установления с текущего мгновенного состояния поля для предыдущего шага по M. Расчеты выполнены при числе Маха в диапазоне $2.0 \le M \le 3.5$ Выбор диапазона обусловлен геометрией сопла.

Визуализация расчетных полей течения представлена распределением плотности с помощью цветовой палитры. Кроме того, затемнением выделяются области с большим значением модуля градиента плотности, что позволяет визуализировать ударные волны и контактные разрывы. На всех изображениях полей течения в данной работе используется один и тот же вариант палитры.

3. Результаты расчетов при различных числах Маха

Если в качестве начальных данных использовать условия в набегающем потоке, по результатам численных экспериментов можно получить две качественно разных картины течения. При относительно малых числах Маха образуется картина с отошедшим скачком уплотнения. На рис. 2, a приведена картина течения при $M\!=\!2.0$. В этом случае перед соплом образуется гладкий отошедший скачок уплотнения, аналогично как перед затупленным телом. Течение между этим скачком и пластинами, образующими сопло, дозвуковое, а в узком месте сопла между пластинами достигается звуковая скорость. При относительно больших числах Маха образуется картина с косыми скачками уплотнения. На рис. 2, δ приведена картина при $M\!=\!3.5$. В этом случае около пластин образуются косые скачки уплотнения с сохранением сверхзвукового характера течения за ними. Передняя кромка пластин, затупленная из-за использования контура в виде эллипса, оказывает лишь локальное влияние на структуру течения.

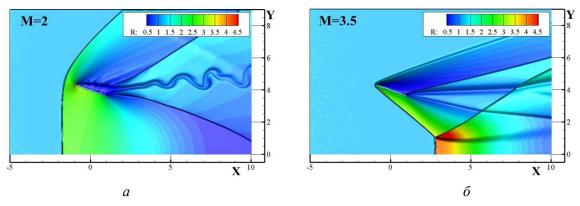


Рис. 2. Течение с отошедшей ударной волной M=2 (a), и с косыми скачками уплотнения M=3.5 (δ)

Две данных схемы течения отличаются качественно. Если провести расчеты, используя в качестве начальных данных решение при M=2.0, с увеличением числа Маха, то получим критическое число Маха, до которого может реализовываться режим с отошедшей ударной волной. Наоборот, если проводить от $M=3.5\,$ с уменьшением числа Маха, то получим второе критическое число Маха, до которого может реализовываться режим с косой ударной волной.

Схема обтекания существенно влияет на аэродинамическое сопротивление. На рис. 3 приведен коэффициент сопротивления C_X в зависимости от M: линия 1 с красными маркерами – расчеты с увеличением по числу Маха, линия 2 с зелеными маркерами — с уменьшением. При проведении расчетов с увеличением числа M (набор точек ABCC'D) получена точка C, соответствующая M=3.2 — максимальное значение M, когда сохраняется течение с дозвуковой областью между пластинами. При увеличении числа Маха до M=3.3 решение качественно перестраивается. При движении с уменьшением числа M получен набор точек DC'B'BA и точка B', соответствующая M=2.4 — минимальное значение M, когда сохраняется течение с косыми скачками уплотнения между пластинами.

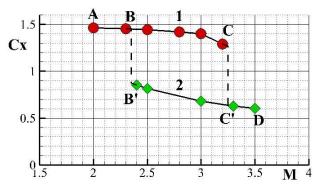


Рис. 3. Коэффициент аэродинамического сопротивления C_X в зависимости от числа Маха М

При числе Маха $M \le 2.3$ реализуется только схема течения с отошедшей ударной волной, при числе Маха $M \ge 3.3$ реализуется только схема течения с косыми скачками уплотнения.

Есть область $2.4 \le M \le 3.2$, когда возможна реализация двух схем обтекания. На рис. 4 и рис. 5 приведены два варианта картины обтекания при M = 2.5 и 3.0.

Если расчет делать от условий в набегающем потоке, то при установлении получаются такие же решения, как если проводить расчеты по параметру с уменьшением числа Маха (набор точек DC'B'BA). Решения на отрезке BC в этом случае не получаются. Аэродинамические свойства сужающего сопла при реализации двух разных схем обтекания существенно отличаются, приблизительно в два раза.

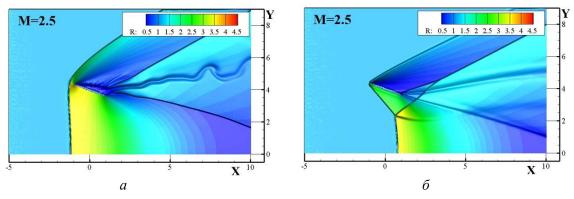


Рис. 4. Течение при M = 2.5 с отошедшей ударной волной (a), и с косыми скачками уплотнения (б)

Метод численного моделирования с возможностью проведения расчетов по параметру (в данном случае число Маха) позволяет учитывать режим обтекания, в котором система находилось до изменения параметра. Реализованный подход к проведению расчетов позволяет выявить область гистерезиса. Смоделирован эффект гистерезиса при обтекании сопла при изменении числа Маха набегающего потока.

Метод получения результата с движением по параметру часто используется в экспериментальных исследованиях. Отметим работу [4], в которой гистерезис течения в кольцевой каверне выявляется при изменении длины каверны в том или ином направлении.

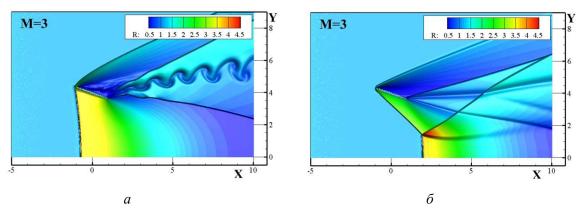


Рис. 5. Течение при M = 3.0 с отошедшей ударной волной (a), и с косыми скачками уплотнения (б)

В работе [5] выполнены расчеты области гистерезиса плоского сопла. При выборе геометрических параметров осесимметричного сопла для проведения расчетов в данной работе было поставлено условие, что проницаемость осесимметричного сопла близка к проницаемости плоского сопла [5]. Проницаемость плоского сопла в [5] определяется выражением

$$\eta = \frac{2. - \sin 20^{\circ}}{2. + \sin 20^{\circ}} \approx 0.7079$$

Проницаемость осесимметричного сопла в данном исследовании

$$\eta = \left(\frac{4.-\sin 20^{\circ}}{4.+\sin 20^{\circ}}\right)^{2} \approx 0.7097$$

Здесь 2. и 4. — расстояние от плоскости или оси симметрии для плоской или осесимметричной задач до центра пластины длинной 2. и установленной под углом 20° . Фактически, проницаемость рассмотренных плоского и осесимметричного сопел по величине близки. Области гистерезиса — в плоской задаче $2.3 \le M \le 3.3$, в осесимметричной $2.4 \le M \le 3.2$ — с учетом определения границ с шагом по числу Маха 0.1, хорошо согласуются. По результатам расчетов, можно предположить, что величина проницаемости сопла существенно определяет размеры области гистерезиса.

На рис. 6 приведен пример распределения скорости около пластины в виде набора векторов скорости в узлах расчетной сетки около обтекаемого тела. Пример получен в условиях $M=2.5\,$ и соответствует картине течения, приведенной на рис. 4, δ , изображена часть пластины ближе к задней кромке (см. рис. 1, δ). Контур пластины выделен красными линиями. Внизу безотрывное течение на наветренной стороне пластины. Вверху — область с местом отрыва при $X\approx 0.55\,$ на подветренной стороне. Пограничный слой достаточно хорошо описывается в рамках заданного распределения узлов.

По результатам расчетов учет вязкости представляется принципиально важным, по крайней мере, при переходе от режима течения с косыми ударными волнами к режиму с отсоединенной ударной волной. Этот переход осуществляется при падении косой ударной волны на заднюю кромку пластины с образованием зоны отрыва на наветренной стороне

пластины, что в дальнейшем приводит к постепенному движению зоны отрыва вперед. И только при достижении отрывной зоны передней кромки пластины, течение в последствии устанавливается, отрывная зона исчезает, а ударная волна становится отошедшая. И образование отрывной зоны от падающего скачка в районе задней кромки пластины, и движение вверх по потоку области отрыва вдоль пластины обусловлены наличием пограничного слоя на пластине.

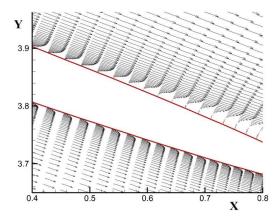


Рис. 6. Профили скорости при M = 2.5 на наветренной (низ) и подветренной (верх) сторонах пластины

4. О возможности управления структурой течения

При наличии области гистерезиса представляет интерес, как обеспечить тот или иной режим обтекания. Фактически, хотелось бы иметь какое-либо воздействие на поток, которое бы приводило к перестройке от одной схемы обтекания к другой. В [1] режим с косыми скачками уплотнения обеспечивается быстрым введением сопла в сверхзвуковой поток. В [6] для формирования сверхзвукового течения в сопле расчетным методом рассматривалась инжекция газа через стенки в расширяющейся части соплового канала. В [7, 8, 9] для перехода между регулярной и маховской ударно-волновой конфигурациями в области двойного решения рассматривается локальные изменения плотности. Была показана возможность перехода от регулярной к маховской конфигурации. В [10, 11] для управления обтеканием тел в сверхзвуковом потоке рассматривался локализованный подвод энергии.

Из полученного вида гистерезиса, очевидно, что для того, чтобы выйти из режима на отрезке ВС надо увеличить число Маха выше критического СС', и когда решение перестроится на другую схему, вернуться к исходному значению числа Маха. С другой стороны, если надо перестроиться с режима на отрезке В'С', то надо уменьшить число Маха ниже критического В'В, а затем, после перестройки решения, вернуться к исходному значению числа Маха. Число Маха определяется скоростью движения потока и скоростью звука, которая определяется отношением давления и плотности. Изменение скорости движения или давления в набегающем потоке приведут к движению внутри потока, а изменение плотности возможно.

Локальные изменения плотности рассматривались в [7, 8, 9] для управления потоком. Если плотность увеличивается, то при постоянном значении давления это означает уменьшение температуры и местной скорости звука. Соответственно, при неизменной скорости потока, к увеличению местного числа Маха. В обратную сторону, если плотность уменьшается, то местное число Маха уменьшается. Если неоднородность, в которой нужным по величине значением меняется плотность, имеет достаточно большие размеры по продольной координате, то изменение схемы обтекания представляется очевидным. Представляет интерес можно ли достаточно локализованной областью неоднородности реализовать управление схемой обтекания.

Наличие неоднородности в потоке приводит к широкому кругу задач. Например, в [12] анализировались изменения в режимах дифракции ударной волны на клине, обусловленные наличием высокотемпературных областей различной формы. Подробный обзор современного состояния исследований по проблеме распространения ударной волны по газу, содержащему неоднородность плотности, представлен в [13, 14]. К настоящему времени хорошо изучено явление искажения формы неоднородности, а также формирование и развитие вихревых структур, характерных для таких задач. В [15] отмечен эффект кумуляции скачков уплотнения на оси симметрии.

В данной работе приведены результаты расчетов при создании в набегающем потоке зоны, расположенной до головной ударной волны, в виде эллипсоида с большой полуосью размером 4. поперек потока и малой полуосью размером 1.5 вдоль потока с измененной по величине плотности до 0.2 или 5.0 от плотности набегающего потока. Изменение плотности в пять раз в рассмотренных вариантах задачи было достаточным для изменения структуры течения в случаях, если это возможно. Задачи определения минимальных размеров области неоднородности, или минимального отклонения по величине плотности от номинального ее значения, не ставились. Были выбраны два решения: 1) M = 2.4 на линии B'C' с косыми скачками уплотнения; 2) M = 2.8 на линии BC с отошедшей ударной волной. И для каждого решения выполнены два расчета нестационарной задачи с введением в начальное поле течения неоднородности с увеличенной (до 5.0) или уменьшенной (до 0.2) плотностью.

На рис. 7, 8 приведены результаты, когда в качестве начальных данных используется решение при M=2.4 с внесением области либо пониженной плотности (рис. 7), либо повышенной плотности (рис. 8). Вариант расчета представлен картинами течения на моменты безразмерного времени T=0.25, 1.0, 2.0, 3.0, 5.0 и 20.0.

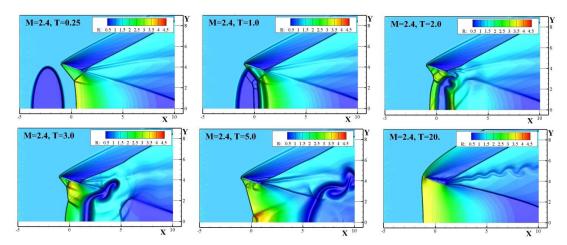


Рис. 7. Течение при М = 2.4, неоднородность по плотности 0.2

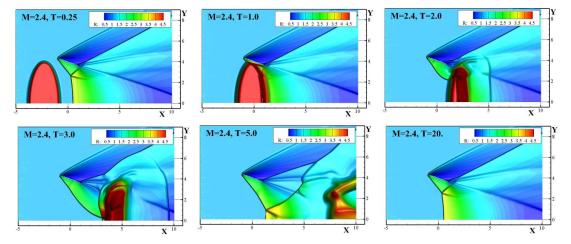


Рис. 8. Течение при M = 2.4, неоднородность по плотности 5.0

Картина течения изменяется, если плотность в неоднородности понижается (рис. 7). В случае неоднородности с повышением плотности картина не изменяется.

На рис. 9, 10 приведены результаты, когда в качестве начальных данных используется решение при $M=2.8\,$ с внесением области либо пониженной плотности (рис. 9), либо повышенной плотности (рис. 10). В этом варианте наоборот, понижение плотности не приводит к изменению картины течения (рис. 9), а повышение плотности (рис. 10) — приводит к перестройке картины течения с отошедшей ударной волной к течению с косыми скачками уплотнения.

Понижение плотности при сохранении давления, означает повышение температуры и, соответственно, скорости звука. При сохранении скорости это приводит к понижению ло-кального числа Маха. Наоборот, повышение плотности означает понижение температуры и скорости звука. В итоге, локальное число Маха увеличивается.

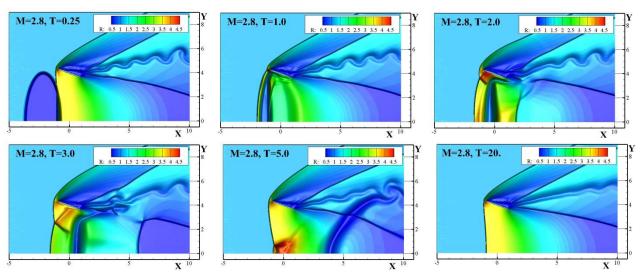


Рис. 9. Течение при М = 2.8, неоднородность по плотности 0.2

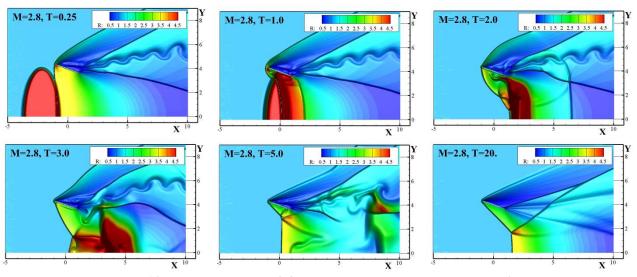


Рис. 10. Течение при M = 2.8, неоднородность по плотности 5.0

Результаты расчетов находятся в полном соответствии с полученным видом гистерезиса. В случае параметров задачи на рис. 7 неоднородность с пониженной плотностью приводит к уменьшению локального числа Маха со смещением влево (см. рис. 3) до и ниже критической точки В'В, с последующей перестройкой решения на схему с отошедшей ударной волной. Если же плотность увеличивается (см. рис. 8), а значит, растет локальное число Маха, то движение вправо не приводит к изменению структуры течения.

Если изначально находимся на режиме течения с отошедшей ударной волной, то наоборот. При уменьшении плотности (рис. 9), соответственно уменьшении локального числа Маха, при движении влево по линии СВА изменение структуры течения не происходит. В другом направлении, при повышении плотности (рис. 10), а, соответственно при повышении локального числа Маха до критического значения СС′ и выше, картина течения перестраивается на схему с косыми скачками уплотнения.

С практической точки зрения представляет интерес возможность перехода от схемы с отошедшей волной к схеме с косыми скачками уплотнения. В условиях, когда реализуется два режима, это можно осуществить созданием перед соплом зоны с повышенной плотностью (при неизменном давлении — это зоны относительно холодного газа).

4. Заключение

На примере течения около осесимметричного сужающегося сопла показана возможность построения методами вычислительной аэродинамики двух вариантов схем обтекания при одних значениях параметров. Фактически выявлена область гистерезиса. Возможность выявления области гистерезиса осуществляется проведением расчетов с дискретным постепенным изменением определяющего параметра (в рассмотренной задаче — число Маха) в двух направлениях (с увеличением и уменьшением значения параметра). Проведение расчетов по данной методике имеет большое значение в условиях, когда решение в достаточно близких условиях может иметь качественно разную структуру течения. Это важно для правильного решения поставленной задачи и необходимо учитывать при исследовании задачи методами вычислительной аэродинамики, когда обычно в качестве начального поля течения используются условия в набегающем потоке.

Показана возможность изменения структуры течения посредством введения в набегающий поток неоднородности по плотности. Для перестройки в области гистерезиса схемы течения от варианта с гладким отошедшим скачком и большим аэродинамическим сопротивлением к варианту с косыми скачками уплотнения, необходимо вводить неоднородность холодного газа, что обеспечивает локальное повышение числа Маха и тем самым делает возможным полезную перестройку решения.

Литература

- 1. Зубин М. А., Туник Ю. В. Запуск осесимметричного сопла Лаваля в гиперзвуковом потоке // Известия Российской академии наук // Механика жидкости и газа. 2014. № 4. С. 155–160.
- 2. Максимов Ф. А., Шевелев Ю. Д. Моделирование обтекания проницаемых поверхностей // Математическое моделирование. 2018. № 11. С. 127–144.
- 3. Максимов Ф. А., Чураков Д. А., Шевелев Ю. Д. Разработка математических моделей и численных методов для решения задач аэродинамического проектирования на многопроцессорной технике // ЖВММФ. 2011. Т. 51. № 2. С. 303–328.
- 4. Симоненко М. М., Зубков А. Ф. Режимы сверхзвукового обтекания кольцевых каверн под углами атаки // Физико-химическая кинетика в газовой динамике. 2023. Т. 24, вып. 3. http://chemphys.edu.ru/issues/2023-24-3/articles/1046/
- 5. Максимов Ф. А. Численное моделирование гистерезиса при обтекании плоского сопла // Математическое моделирование и численные методы. 2023. № 4. С. 27–46.
- 6. Туник Ю. В. Запуск сопла Лаваля в набегающем потоке // Известия Российской академии наук. Механика жидкости и газа. 2011. № 5. С. 120–127.
- 7. Иванов М. С., Кудрявцев А. Н., Хотяновский Д. В. Численное моделирование перехода между регулярным и маховским отражением ударных волн под воздействием локальных возмущений // Доклады Академии наук. 2000. Т. 373. № 3. С. 332–336.

- 8. Алексеев А. К. Управление переходом между регулярным и маховским режимами взаимодействия ударных волн // ЖВММФ. 2012. Т. 53. № 6. С. 1134–1142.
- 9. Алексеев А. К. О переходе между регулярным и маховским режимами взаимодействия ударных волн под воздействием возмущения температуры // Известия Российской академии наук. Механика жидкости и газа. 2012. № 5. С. 107–113.
- 10. Георгиевский П. Ю., Левин В. А. Управление обтеканием различных тел с помощью локализованного подвода энергии в сверхзвуковой набегающий поток // Известия Российской академии наук. Механика жидкости и газа. 2003. № 5. С. 154–167.
- 11. Schulein E., Zheltovodov A. A., Pimonov E. A, Loginov M. S. Study of the bow shock interaction with laser pulse heated air bubbles. AIAA Paper 2009-3568.
- 12. Fokeev V. P., Grin Yu. I., Levin V. A., Sharov Yu. L., Tunik Yu. V. The influence of gas discharge on propagation of triple shock mach configuration numerical and experimental investigations // Proc. 5th Intern. Workshop on Magneto_Plasma Aerodynamics in Aerospace Applications / Ed. By V.A. Bityurin. Moscow: IVTAN. 2003. Pp. 234–240.
- 13. Niederhaus J. H. J., Greenough J. A., Oakley J. G., Ranjan D., Anderson M. H., Bonazza R. A. Computational parameter study for the three-dimensional shock bubble interaction // J. Fluid Mech. 2008. Vol. 594. Pp. 85–124.
- 14. Schulein E., Zheltovodov A. A., Pimonov E. A., Loginov M. S. Experimental and numerical modeling of the bow shock interaction with pulse heated air bubbles // Int. J. Aerospace Innovations. 2010. Vol. 2. No. 3. Pp. 165–188.
- 15. Picone J. M., Boris J. P. Vorticity generation by shock propagation through bubbles in a gas. // J. Fluid Mech. 1988. Vol. 189. Pp. 23–51.

References

- 1. Zubin M. A., Tunik Y. V., Starting of an axisymmetric convergent-divergent nozzle in a hypersonic flow, *Fluid Dynamics*, 2014, vol. 49, pp. 557–561. https://doi.org/10/1134/S0015462814040164
- 2. Shevelev Y. D., Maksimov F. A., Modeling a flow around permeable surfaces, *Mathematical Models and Computer Simulations*, 2019, vol. 11, no. 4, pp. 531–541. DOI:10.1134/S2070048219040124
- 3. Maksimov F. A., Churakov D. A., Shevelev Y. D., Development of mathematical models and numerical methods for aerodynamic design on multiprocessor computers, *Computational Mathematics and Mathematical Physics*, 2011, vol. 51, no. 2, pp. 284–307. DOI:10.1134/S0965542511020126
- 4. Simonenko M. M., Zubkov A. F., Supersonic flow modes of annular cavities at angles of attack, *Physical-Chemical Kinetics in Gas Dynamics*, 2023, vol. 24, no. 3. [in Russian]. http://doi.org/10.33257/PhChGD.24.3.1046
- 5. Maksimov F. A., Numerical modeling of hysteresis in flow around a flat nozzle, *Mathematical modeling and numerical methods*, 2023, no. 4, pp. 27–46 [in Russian]. DOI: 10.18698/2309-3684-2023-4-2746
- 6. Tunik Yu. V., Nozzle startup in oncoming flow, *Fluid Dynamics*, 2011, vol. 46, no. 5, pp. 775–781. DOI:10.1134/S0015462811050115
- 7. Ivanov M. S., Kudryavtsev A. N., Khotyanovskii D. V., Numerical simulation of the transition between the regular and Mach reflection of shock waves under the action of local perturbations, *Doklady Physics*, 2000, vol. 45, no.7, pp. 353–357. DOI:10.1134/1.1307089
- 8. Alekseev A. K., Control of the transition between regular and Mach reflection of shock waves, *Computational Mathematics and Mathematical Physics*, 2012, vol. 52, no. 6, pp. 976–983. https://doi.org/10.1134/S0965542512060036
- 9. Alekseev A. K., Transition between the regular and Mach shock interaction regimes initiated by a temperature disturbance, *Fluid Dynamics*, 2012, vol. 47, no. 5, pp. 654–60. https://doi.org/10/1134/S0015462812050134

- Georgievskii P. Yu., Levin V. A., Control of the flow past bodies using localized energy addition to the supersonic oncoming flow, *Fluid Dynamics*, 2003, vol. 38, no. 5, pp. 794–805. https://doi.org/10.1023/B:FLUI.0000007841.91654.10
- 11. Schulein E., Zheltovodov A. A., Pimonov E. A, Loginov M. S., Study of the bow shock interaction with laser pulse heated air bubbles, AIAA Paper 2009-3568. DOI:10.2514/6.2009-3568
- 12. Fokeev V. P., Grin Yu. I., Levin V. A., Sharov Yu. L., Tunik Yu. V., The influence of gas discharge on propagation of triple shock mach configuration numerical and experimental investigations, Proc. 5th Intern. Workshop on Magneto_Plasma Aerodynamics in Aerospace Applications, Ed. by V. A. Bityurin, Moscow: IVTAN, 2003, pp. 234–240.
- 13. Niederhaus J. H. J., Greenough J. A., Oakley J. G., Ranjan D., Anderson M. H., Bonazza R. A., Computational parameter study for the threedimensional shock bubble interaction, *J. Fluid Mech*, 2008, vol. 594, pp. 85–124. https://doi.org/10.1017/S0022112007008749
- 14. Schulein E., Zheltovodov A. A., Pimonov E. A., Loginov M. S., Experimental and numerical modeling of the bow shock interaction with pulse heated air bubbles, *Int. J. Aerospace Innovations*, 2010, vol. 2, no. 3, pp. 165–188. https://doi.org/10.1260/1757-2258.2.3.165
- 15. Picone J. M., Boris J. P., Vorticity generation by shock propagation through bubbles in a gas, *J. Fluid Mech.*, 1988, vol. 189, pp. 23–51. https://doi.org/10.1017/S0022112088000904

Статья поступила в редакцию 9 декабря 2024 г.