УДК 536.46

УПРАВЛЕНИЕ ПСЕВДОСКАЧКОМ НЕСТАЦИОНАРНЫМ ВОЗДЕЙСТВИЕМ

Забайкин В.А.

Институт теоретической и прикладной механики СО РАН, г.Новосибирск lab2@itam.nsc.ru

Аннотация

Экспериментально показана возможность и способы управления псевдоскачком в гладком канале постоянного сечения периодическим энерговводом различного типа. Определена скорость перемещения газодинамических структур псевдоскачка в изотермическом случае и в реагирующем потоке.

CONTROL OF PSEUDO SHOCK BY NON-STATIONARY EFFECT

The capability and ways of control of pseudo shock in the smooth channel of constant area by periodic energy supply of various types is experimentally shown. Displacement speed of gas-dynamic structures of pseudo shock in an isothermal case and in a reacting flow is determined.

Введение

Переход от сверхзвукового режима течения в каналах к дозвуковому сопровождается повышением статического давления и при определённых условиях (числах Маха потока свыше 1.5, наличии пограничного слоя и достаточной длины канала – не менее 5-10 калибров) происходит в сложной системе скачков уплотнения, которая впервые была исследована в [1] и названа псевдоскачком. Такая газодинамическая система (состоящая из прямых, косых, λ -образных скачков уплотнения) возникает в газодинамических лазерах, воздухозаборниках двигателей сверхзвуковых самолётов, диффузорах сверхзвуковых аэродинамических труб и в камерах сгорания прямоточных двигателей [2-6]. Процесс горения в воздушном потоке при умеренных сверхзвуковых скоростях на входе в камеру сгорания (M=1,5÷3) может реализовываться двумя режимами, отличающимися интенсивностью тепловыделения – в виде диффузионного пламени и в газодинамической структуре типа псевдоскачка [3,7]. Интерес к псевдоскачковому режиму горения связан с тем, что при его организации происходит резкая интенсификация процесса смешения топлива с окислителем и возрастают скорости химических реакций (вследствие повышения давления и температуры). Это приводит к интенсификации процесса горения и сокращает длину пламени [7-9].

В то же время управление положением псевдоскачка представляет значительную трудность, как при изотермическом течении, так и особенно при организации горения. Поддержание одинаковых начальных параметров потока на входе в канал не гарантирует однозначного соответствия режимов горения – возможна реализация резко отличающихся режимов: от слабого диффузионного горения (или даже невоспламенения топлива) до интенсивного (в псевдоскачке или при тепловом запирании). Данная проблема обостряется в гладких каналах, а обычные способы управления путем введения стабилизаторов типа ниш, уступов, пилонов и т.п., приводят к значительным потерям полного давления; при этом положение псевдоскачка оказывается жестко привязано к элементам стабилизаторов. Кроме того, практически нет работ по изучению динамики движения псевдоскачка при быстром изменении внешних условий, так как все исследования проводились при стационарных параметрах. Начатые в ИТПМ СО РАН работы по внешнему энергетическому воздействию на газодинамику потока показали перспективность применения импульсно-периодического

1

воздействия для управления псевдоскачком и позволили получить предварительные результаты в случае изотермического течения [10,11].

В представленной работе показана возможность и исследованы некоторые способы управления псевдоскачком в гладком канале постоянного сечения периодическим энерговводом в нереагирующий поток и при наличии горения. При этом применение как единичного, так и импульсно-периодического воздействия на воздушный поток позволило воздействовать на структуру потока, производить переход к псевдоскачковому режиму течения, и изменять положение псевдоскачка в канале.

Результаты экспериментов

Экспериментальный стенд, на котором проводились работы, описан в [12]. На нём возможно создание сверхзвукового холодного и горячего воздушного потока. При этом подогрев воздуха производится плазмотроном мощностью 2 МВт, в том числе до температур, достаточных для самовоспламенения водорода (достижимый диапазон температур торможения T₀ = 1200÷3000 K). Применение охлаждаемых профилированных сопел позволяет проводить длительные непрерывные эксперименты (не менее десятков секунд), в которых можно создавать энергетическое воздействие на поток и наблюдать динамику эволюций газодинамических структур, в том числе псевдоскачка. Исследования проводились в осесимметричном канале диаметром 50 мм, с числом Маха воздушного потока на входе, равным M=2.2 (рис.1,*a*). Длина канала могла меняться от 200 до 550 мм (максимальная длина, соответствует рисунку). В боковую стенку канала могли вставляться кварцевые окна высотой 10 мм, что делало доступным для оптических наблюдений центральную часть потока. В случае изотермического течения проводилась теневая регистрация положения скачков уплотнения (рис. 1, δ); в горячем потоке при наличии горения фиксировалось наличие пламени в видимом диапазоне и положение зон горения водорода в ультрафиолетовом диапазоне длин волн.

a

Рис.1. *а* – схема канала и дросселирования выходного сечения для нереагирующего потока: 1 – сверхзвуковое сопло M=2.2; 2 – кварцевое окно; 3 – устройство для периодического перекрытия выходного сечения. δ – шлирен-регистрация волновой структуры псевдоскачка в осевой части потока.

Экспериментально исследовано 4 способа энергетического воздействия на течение в канале: механическое дроссселирование выходного сечения канала, впрыск плазмы от импульсно-периодического плазмотрона (рис.2), периодическое детонационное воздействие и вдув воздуха со стенки. Частоты воздействия находились в диапазоне от 1 до 25 Гц.

Рис.2. Подвод энергии в секцию канала от импульсно-периодического плазмотрона мощностью 20 кВт (сверху) и через детонационную трубку (сбоку).

Независимо от вида, ввод возмущений в конце канала приводил к перемещению псевдоскачка вверх и вниз по потоку. В холодном потоке боковые стенки, оснащенные кварцевыми стёклами, позволяли наблюдать структуру псевдоскачка. Применение скоростной шлирен-регистрация дало информацию об изменения структуры и скорости передвижения псевдоскачка. Эта информация также сопоставлялась с измерениями статического давления по длине канала. Необходимо отметить, что перемещение псевдоскачка происходит, когда в начальный момент времени (т.е. в невозмущенном потоке) псевдоскачок частично заходит в канал. При полном начальном отсутствии в канале псевдоскачка, для его появления требуется ввод энергии достаточной мощности и длительности, что также требует изучения.

В холодном потоке при частотах воздействия до 25 Гц псевдоскачок перемещается по каналу как единое целое (с сохранением расстояния между соседними газодинамическими структурами в пределах 10%), а скорость его перемещения достигает десятков метров в секунду. Скорость движения верх по потоку (после подачи энергоимпульса) на 20-50% выше скорости перемещения вниз по потоку (после снятия возмущений). На рисунках 3-6 показана скорость перемещения псевдоскачка, определённая оптическим методом по изменениям положения первых скачков уплотнения газодинамической структуры псевдоскачка, при механическом дросселировании выходного сечения канала (схема соответствует рис.1,*a*). Регистрация производилась с частотой 1000 кадров в секунду. Время экспозиции составляло 1/15000-1/10000 с. На рисунках 3-6 приведены результаты измерения скорости для частот дросселирования (перекрытия) f = 4.4 и 12.2 Гц, при движения вверх и вниз по каналу.

Полученный результат, показывающий консервативность газодинамической структуры псевдоскачка, вероятно связан с относительно небольшой (существенно дозвуковой) скоростью передвижения псевдоскачка при динамическом воздействии. При этом скачки уплотнения, составляющие газодинамическую структуру псевдоскачка, успевают подстраиваться к меняющимся внешним условиям.

частоте дросселирования $f = 4.4 \Gamma \mu$.

частоте дросселирования $f = 4.4 \Gamma \mu$.

Из графиков скоростей для двух частот f перекрытия видно, что соответствующие скорости перемещения псевдоскачка при f = 4.4 и 12.2 Гц находятся в диапазонах 10-30 м/с для движения вверх по течению и 7-25 м/с при движении вниз по течению. При этом скорость движения газодинамических структур в осесимметричном канале имеет максимум через 3-6 мс после начала движения, но достаточно близка к постоянной величине в начале и конце перемещения. Измерения скорости движения по изменению статического давления на стенке канала показали близкие результаты; в то же время эти измерения имеют меньшую точность, особенно в отношении движения вниз по потоку.

В горячем реагирующем потоке шлирен-регистрация затруднена и поэтому приходилось ориентироваться на измерения статического давления и в некоторых случаях на движение фронта пламени. На рис.7 показана последовательность движения зоны горения водорода вверх по потоку при кратковременной подаче дополнительного воздуха в конец канала. При этом происходила перестройка от диффузионного режима горения к псевдоскачковому. Съёмка произведена через окно длиной 120 мм (видимая зона 115 мм), время между кадрами – 0.04 с. Подача водорода – с осевого инжектора; $M_{H2} = 2.7$.

Оценка скорости передвижения даёт примерную величину $V \approx 1.4$ м/с. По данным измерений статического давления, с регистрацией параметров через каждые 0.002 с, скорость лежит в пределах 0.35-1.1 м/с (рис.8), что близко к оценке, полученной по перемещению зоны свечения (рис.7).

Как видно, эти величины меньше скоростей, зафиксированных в нереагирующем холодном потоке. Это требует дальнейшего изучения и возможно связано со взаимодействием процесса воспламенения (и горения) водорода и скачками уплотнения газодинамической структуры псевдоскачка. Совместное действие двух факторов даёт временное отставание движения псевдоскачка в реагирующем потоке по сравнению с распространением возмущений только газодинамическим способом. Также, в отличие от изотермического случая, измерения показывают непрерывное увеличение скорости, от момента начала движения до его завершения. В этой фазе (максимального продвижения) наблюдается практически полное выгорание водорода (подаваемого с осевого инжектора в начальной части канала) в реализующемся псевдоскачке. На рис.9 приведён пример регистрация непосредственно зоны горения водорода в УФ-области спектра, что даёт наиболее точную дающая информацию о локализации пламени [13]. Регистрация производилась на комбинацию электроннооптического преобразователя (ЭОП) с камерой технического зрения, при выделении излучения радикала ОН ультрафиолетовым светофильтром.

Такое сокращение длины зоны горения наблюдается и при других видах энергетического (включая кинетическое) воздействия. На рис.10 показан вид пламени при энерговводе в поток с помощью детонационной трубки (место воздействия показано стрелкой).

Необходимо отметить, что на перестройку режимов течения (и горения) оказывают влияние как длительность, так и энергетика отдельного импульса. При коротких временах энерговвода (~1 мс) поток не успевал перестроиться и квазистационарного псевдоскачкового режима не возникало. Длительность импулься ≈16-20 мс приводила к чётко фиксируемому повышению давления и последующему движению псевдоскачка. Возможно, что серия коротких импульсов будет действовать аналогично одному длительному, но требуется дальнейшая экспериментальная проверка.

При малой энергии импульса также становится невозможным управление псевдоскачком и/или его реализация. Так, воздействие плазмотроном с энергией импульса до 400 Дж, является эффективным методом управления псевдоскачком в холодном потоке, однако становится недостаточным при нагреве потока до температур свыше 1500 К. Оценки показали, что воздействие на реагирующий поток становится реальным при энергетике воздействия составляющей \approx 3-4 % от уровня внутренней энергии потока. Работа указывает на необходимость дальнейшего изучения динамики поведения псевдоскачка, в том числе проведения экспериментов для получения точных данных по пороговому энергетическому и временно́му уровню воздействия на высокоэнтальпийный реагирующий поток.

Заключение

В результате проведенных экспериментов показана возможность динамического управления псевдоскачком в гладком канале, осуществляемого путем энерговвода в воздушный поток или дросселирования канала в выходном сечении. В осесимметричном канале диаметром 50 мм с начальным числом Маха 2.2 определена скорость перемещения газодинамических структур псевдоскачка в изотермическом случае и в высокотемпературном потоке при горении водорода. Показан консерватизм (неизменность структуры псевдоскачка) при его движении вверх и вниз по каналу в изотермическом случае. При этом скорость перемещения находится в диапазоне 10-20 м/с и примерно на порядок превышает скорость перемещения псевдоскачка в высокотемпературном потоке при организации процесса горения.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант № 09-08-00998.

Литература

- 1. Neuman E.P., Lustwerk F. Supersonic Diffusers for Wind Tunnels // Journal Appl. Mech., 1949, Vol. 16, No. 2, P.195–202.
- 2. Крокко Л. Одномерное рассмотрение газовой динамики установившихся течений (Гл. 2) // Основы газовой динамики / Под ред. Г. Эммонса. М.: Изд-во иностр. литературы, 1963, 702 с.
- 3. Щетинков Е.С. О кусочно-одномерных моделях сверхзвукового горения и псевдоскачка в канале // Физика горения и взрыва, 1973, Т. 9, № 4, С. 473–483.
- 4. Пензин В.И. / Об условиях оптимизации сверхзвуковых течений с системой косых скачков уплотнения и последующим теплоподводом. М.: Изд. ЦАГИ, 2008, 160 с.
- 5. Гуськов О.В., Копченов В.И., Липатов И.И., Острась В.Н., Старухин В.П. / Процессы торможения сверхзвуковых течений в каналах. М.: ФИЗМАТЛИТ, 2008, 168 с.
- 6. Кталхерман М.Г., Мальков В.М., Рубан Н.А. Торможение сверхзвукового потока в прямоугольном канале постоянного сечения // ПМТФ, 1984, № 6, С. 48-57.
- 7. Третьяков П.К. Псевдоскачковый режим горения // Физика горения и взрыва, 1993, Т. 29, № 6, С. 33–38.
- 8. Забайкин В.А., Третьяков П.К. Исследование процессов горения применительно к ГПВРД // Химическая физика, 2004, Т. 23, № 4, С. 47–51.
- 9. Строкин В.Н. Результаты экспериментального исследования стабилизации горения и выгорания водорода в модельных камерах сгорания ГПВРД // Фундаментальные и прикладные проблемы космонавтики, 2000, № 2, С. 33–40.
- Забайкин В.А., Смоголев А.А. Скорость перемещения псевдоскачка при дросселировании и подводе энергии. Актуальные проблемы российской космонавтики: Труды XXXIV Академических чтений по космонавтике. М.: Комиссия РАН, 2010, С. 183.
- 11. Третьяков П.К. Псевдоскачковый пульсирующий режим горения. Шестой Международный Аэрокосмический Конгресс. Тезисы докладов. М.: МГАТУ им. К.Э. Циолковского. 2009, C.80–81.
- Забайкин В.А. Качество высокоэнтальпийного потока при электродуговом подогреве воздуха в установке для исследования сверхзвукового горения // Физика горения и взрыва, 2003, Т.39, № 1, С.28–36.
- 13. Баев В.К., Головичев В.И., Третьяков П.К. и др. / Горение в сверхзвуковом потоке. Новосибирск: Наука, 1984.

Статья поступила в редакцию 27 мая 2011 г.