Using a three-parameter differential RANS turbulence model, a numerical study of a compressible turbulent boundary layer in a supersonic flow with a positive and negative pressure gradient was carried out, which was realized by changing the Mach number of the incoming flow along the length of the plate. The study was carried out for a number of values of the input Mach number (from 1 to 3) and two values of the temperature factor (0.5 and 1.5). Using the results of calculations of the flow and heat transfer characteristics, the dependences of the Reynolds analogy coefficient on two pressure gradient parameters are obtained. Keywords: RANS model of turbulence, Mach number, pressure gradient, coefficient of friction, Stanton number, temperature factor, Reynolds analogy coefficient.
RANS model of turbulence, Mach number, pressure gradient, coefficient of friction, Stanton number, temperature factor, Reynolds analogy coefficient
Коэффициент аналогии Рейнольдса в сжимаемом турбулентном пограничном слое с градиентом давления
С использованием трехпараметрической дифференциальной RANS-модели турбулентности проведено численное исследование сжимаемого турбулентного пограничного слоя в сверхзвуковом потоке с положительным и отрицательным градиентом давления, который был реализован за счет изменения числа Маха набегающего потока по длине пластины. Исследование проведено для ряда значений входного числа Маха (от 1 до 3) и двух значений величины температурного фактора (0.5 и 1.5). С использованием результатов расчетов характеристик течения и теплообмена получены зависимости коэффициента аналогии Рейнольдса от двух параметров градиента давления.
RANS-модель турбулентности, число Маха, градиент давления, коэффициент трения, число Стантона, температурный фактор, коэффициент аналогии Рейнольдса
1. Ginevskii A. S., Ioselevich V. A., Kolesnikov A. V., Lapin Yu. V., Pilipenko V. N., and Sekundov A. N. Advances in Science and Engineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series. 1978, Moscow, vol. 11, pp. 155-304 2. Ievlev V. M. Turbulentnoe dvizhenie vysokotemperaturnykh sploshnykh sred (Turbulent motion of high-temperature continuous media). Moscow, Nauka, 1975. 256 p 3. Avduevsky V. S. News of the USSR Academy of Sciences. Mechanics and mechanical engineering. 1962, no 4, pp. 3-12 4. Kutateladze S. S., Leontyev A. I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe (Heat and mass transfer and friction in a turbulent boundary layer). Moscow, Energiya, 1972. 342 p 5. Kovalev V. I., Lushik V. G., Sizov V. I., Yakubenko A. E. Fluid Dynamics, Maik Nauka/Interperiodica Publishing (Russian Federation). 1992, vol. 27, pp. 35-42 6. Lushchik V. G., Pavel’ev A. A., Yakubenko A. E. Fluid Dynamics, Maik Nauka/Interperiodica Publishing (Russian Federation). 1978, vol. 13, no 3, pp. 350-360 7. Lushchik V. G., Pavel’ev A. A., Yakubenko A.E. Fluid Dynamics, Maik Nauka/Interperiodica Publishing (Russian Federation). 1986, vol. 21, no 2, pp. 200-211 8. Lushchik V. G., Pavel’ev A. A., Yakubenko A. E. Fluid Dynamics, Maik Nauka/Interperiodica Publishing (Russian Federation). 1994, vol. 29, no 4, pp. 440-457 9. Lushchik V. G., Yakubenko A. E. Fluid Dynamics, 1998, no 33, pp. 36-47. https://doi.org/10.1007/BF02698159 10. Lushchik V. G., Yakubenko A. E. Fluid Dynamics, 1998, no 33, pp. 864-875. https://doi.org/10.1007/BF02698655 11. Clauser F. H. Journal of the Aeronautical Sciences, 1954, vol. 21. pp. 91-108. https://doi.org/10.2514/8.2938 12. Monty J. P., Harun Z, and Marusic I, Int. J. Heat Fluid Flow, 2011, vol. 32, no 3, pp. 575-585. DOI: 10.1016/j.ijheatfluidflow.2011.03.004 13. Araya G and Castillo L, Phys. Fluids, 2013, vol. 25, DOI:10.1063/1.4820816. 14. Z. Harun, J. P. Monty, R. Mathis, and I. Marusic, “Pressure gradient effects on the large-scale structure of turbulent boundary layers,” Journal of Fluid Mechanics, 2013, 715: pp. 477-498. DOI:10.1017/jfm.2012.531 15. Melnick M. B. and Thurow B. S. AIAA J. 2015, vol. 53, pp. 1-14. DOI:10.2514/1.J054049 16. Kiselev N. A., Leontiev A. I., Vinogradov Yu. A., Zditovets A. G., Popovich S. S. International Journal of Heat and Fluid Flow, 2021, vol. 89, 108801. DOI: 10.1016/j.ijheatfluidflow.2021.108801 17. Lushchik V. G., Makarova M. S. Fluid Dynamics, 2022, vol. 57, no 3, pp. 328-340. https://doi.org/10.1134/S0015462822030119 18. Lushchik V. G., Makarova M. S. Teplovie protsessi v tehnike (Thermal processes in engineering), 2017, vol. 9, no 11, pp. 482-488 19. Lushchik V. G., Makarova M. S., Reshmin A. I. Fluid Dynamics, 2019, vol. 54, no 1, pp. 67-76 20. Lushchik V. G., Makarova M. S., Medvetskaya N. V., Reshmin A. I. Teplovie protsessi v tehnike (Thermal processes in engineering), 2019, vol. 11, no 9, pp. 386-394 21. Lushchik V. G., Reshmin A. I., Teplovodskii S. Kh, Trifonov V. V. Fiziko-chimicheskaya kinetika v gazovoy dinamike (Physico-chemical kinetics in gas dynamics), 2024, vol. 25(1), pp. 1-16. http://chemphys.edu.ru/issues/2024-25-1/articles/1082/ 22. Lushchik V. G., Reshmin A. I. Fiziko-chimicheskaya kinetika v gazovoy dinamike (Physico-chemical kinetics in gas dynamics), 2024, vol.25(4), pp. 1-19. http://chemphys.edu.ru/issues/2024-25-4/articles/1121/ 23. Lushchik V.G., Pavel’ev A.A., Yakubenko A.E. Fluid Dynamics, Maik Nauka/Interperiodica Publishing (Russian Federation), vol. 23, no 6, pp. 835-842 24. Schlichting H., Boundary Layer Theory (McGraw-Hill, New York, 1979) 25. Lushchik V. G., Pavel’ev A. A., Reshmin A. I., Yakubenko A. E. Fluid Dynamics, 1999 Maik Nauka/Interperiodica Publishing (Russian Federation), vol. 34, no 6, pp. 867-873