Numerical Modeling of Flow Laminarization in Channels with a Negative Pressure Gradient




Numerical simulation of flow and heat transfer in channels with a negative pressure gradient is carried out using a three-parameter differential RANS turbulence model supplemented by a transfer equation for a turbulent heat flux. The flow in a flat confuser with small values of the wall inclination angle is considered in a wide range of Reynolds numbers. Heat transfer during the flow of a helium-xenon gas mixture in a heated pipe is investigated in a wide range of heat fluxes into the pipe wall. Estimates are obtained for the flow acceleration parameter that ensures laminarization of the turbulent flow in the channel.

flow with heat exchange, RANS turbulence model, flat confuser, heated pipe.


Volume 25, issue 4, 2024 year


Численное моделирование ламинаризации течения в каналах с отрицательным градиентом давления

Численное моделирование течения и теплообмена в каналах с отрицательным градиентом давления проведено с использованием трехпараметрической дифференциальной RANS-модели турбулентности, дополненной уравнением переноса для турбулентного потока тепла. Рассмотрено течение в плоском конфузоре с малыми величинами угла наклона стенки в широком диапазоне чисел Рейнольдса. Исследован теплообмен при течении гелий-ксеноновой смеси газов в обогреваемой трубе в широком диапазоне величин тепловых потоков в стенку трубы. Получены оценки параметра ускорения потока, обеспечивающего ламинаризацию турбулентного течения в канале.

течение с теплообменом, RANS-модель турбулентности, плоский конфузор, труба с подогревом.


Volume 25, issue 4, 2024 year



1. Sternberg J., The Transition from a Turbulent to a Laminar Boundary Layer, US Army Bal. Res. Lab. Aberdeen, Rep. 906 (1954).
2. Ginevskii A. S., Ioselevich V. A., Kolesnikov A. V., Lapin Yu. V., Pilipenko V. N., and Sekun-dov A. N., Methods of Calculation of Turbulent Boundary Layers, in: Advances in Science and Engineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series. Vol. 11 (Moscow, 1978), p. 155 [in Russian].
3. Narashima R. and Sreenivasan K. R., Relaminarization Fluid Flows, Adv. Appl. Mech. Vol. 19. P. 221 (1979).
4. Kader B. A. and Yaglom A. M., Effect of Roughness and a Longitudinal Pressure Gradient on Tur-bulent Boundary Layers, in: Advances in Science and Engineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series. Vol. 18 (Moscow, 1984), p. 3 [in Russian].
5. Lushchik V. G., Pavel’ev A. A., and Yakubenko A. E., Transport Equations for Turbulence Characteristics: Models and Results of Calculations, in: Advances in Science and Engineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series, Vol. 22 (Moscow, 1988), p. 3. [in Russian]
6. Moretti P. H. and Kays V. M., Heat Transfer in Turbulent Boundary Layer with Varying Freestream Velocity and Varying Surface Temperature —an Experimental Study, Int. J. Heat Mass Transfer 8, 1187 (1965).
7. Sreenivasan K. R., Laminariscent, Relaminarizing and Retransitional Flows, Acta Mech. 44, 1 (1982).
8. Badry Narayanan M. A. and Ramjee V., On the Criteria for Reverse Transition in a Two-Dimensional Boundary-Layer Flow, J. Fluid Mech. 35 (2), 225 (1969).
9. Sekundov A. N., Application of a Differential Equation for Turbulent Viscosity to the Analysis of Plane Non-Self-Similar Flows, Fluid Dynamics 6 (5), 828 (1971).
10. Volchkov E. P., Makarov M. S., and Sakhnov A. Yu., Boundary Layer with Asymptotic Favourable Pressure Gradient, Int. J. Heat Mass Transfer 53, 2837 (2010).
11. Bourassa C. and Thomas F. O., An Experimental Investigation of a Highly Accelerated Turbulent Boundary Layer, J. Fluid Mech. 634, 359 (2009).
12. Jones M. B., Marusic I., and Perry A. E., Evolution and Structure of Sink-Flow Turbulent Boundary Layers, J. Fluid Mech. 428, 1 (2001).
13. Escuder M. P., Abdel-Hameed A., Johnson M. W., and Sutcliffe C. J., Laminarization and Retransition of a Turbulent Boundary Layer Subjected to Favourable Pressure Gradient, Exp. Fluids 25, 491 (1998).
14. Coon C. W., Perkins H. C. Transition from the turbulent to the laminar regime for internal convec-tive flow with large property variations. J. Heat Transf. 1970. Vol. 92, No. 3. Pp. 506–512.
15. Bankston S. A. The transition from turbulent to laminar gas flow in a heated pipe. J. Heat Transf. 1970. Vol. 92, No. 4. Pp. 569–579.
16. Lushchik V. G., Makarova M. S., Reshmin A. I., Laminarization of Flow with Heat Transfer in a Plane Channelwith a Confuser, Fluid Dynamics, 2019, Vol. 54, No. 1, pp. 66–75.
17. Tanaka H. and Shimitzu J.-I., Laminarization in Low Reynolds Number Turbulent Duct Flows, J. Heat Transfer 99 (4), 682 (1977).
18. Tanaka H., Kawamura H., Tateno A., and Hatamiya S., Effect of Laminarization and Retransition on Heat Transfer for Low Reynolds Number Flows through a Converging to Constant Area Duct, J. Heat Transfer 104 (2), 363 (1982).
19. Talamelli A., Fornaciari N., Johan K., Westin A., and Alfredsson P. H., Experimental Investigation of Streaky Structures in a Relaminarizing Boundary Layer, J. Turbulence, 3, 018 (2002).
20. Ichimiya M., Nakamura I., and Yamashita S., Properties of a Relaminarizing Turbulent Boundary Layer under a Favorable Pressure Gradient, Exp. Thermal Fluid Sci. 17 (1–2), 37 (1998).
21. Ichimiya M., Nakase Y., Nakamura I., Yamashita S., Fukutomi J., and Yoshikawa M., Properties of a Relaminarizing Turbulent Boundary Layer under a Favorable Pressure Gradient (Analysis of Bursting Structure with VITA Technique), Trans. Japan Soc. Mech. Engineers Part B 62 (594), 483 (1998).
22. Schlichting H., Boundary Layer Theory (McGraw-Hill, New York, 1979).
23. Oriji U. R., Karimisani S., and Tucker P. G., RANS Modeling of Accelerating Boundary Layers, J. Fluid Eng. Trans. ASME 137 (1), Paper No. A12 (2015).
24. Lushchik V. G., Pavel’ev A. A., and Yakubenko A. E., Three-Parameter Model of Shear Turbulence, Fluid Dynamics 13 (3), 350 (1978).
25. Lushchik V.G., Pavel’ev A. A., and Yakubenko A. E., Three-ParameterModel of Turbulence. Heat Transfer Calculations, Fluid Dynamics 21 (2), 200 (1986).
26. Lushchik V. G., Reshmin A. I. Heat Transfer Enhancement in a Plane Separation-free Diffuser, High Temperature, 2018, vol.56, no.4, pp 569–575.
27. Shakirov R. R., Davletshin I. A. & Mikheev N. I., Kinematic structure of flow and the heat transfer in flat diffuser and confuser channels, Thermophys. Aeromech. 29, 759–764 (2022). https://doi.org/10.1134/S08698643220500146
28. Lushchik V. G., Reshmin A. I., Teplovodskii S. Kh., Trifonov V. V. Numerical Modeling of Flow and Heat Transfer in a Flat Confuser, Physical-Chemical Kinetics in Gas Dynamics 2024 V25 (1) Pp. 1–16. http://chemphys.edu.ru/issues/2024-25-1/articles/1082.
29. Repik E. U., Sosedko Y. P. Control of the level of flow turbulence - M.: Publishing House of Fiziko-Mathematical Literature, 2002. - 244 p. -- ISBN 5-94052-055-3, in Russian.
30. Lushchik V. G., Reshmin A. I., Trifonov V. V. Effect of Inlet Conditions on the Flow and Heat Transfer in a Flat Diffuser, Physical-Chemical Kinetics in Gas Dynamics 2023 V 24(5) http://chemphys.edu.ru/issues/2023-24-5/articles/1066
31. Lushchik V. G., Makarova M. S. Heat transfer during the tube flow of an He-Xe gas mixture with a substantial pressure gradient due to the strong heating of the tube // Journal of Engineering Physics and Thermophysics. 2022. Vol. 95. No. 6, pp. 1539-1547.
32. Vitovsky O. V., Makarov M.S., Nakoryakov V.E., Naumkin V.S. Heat transfer in a small diameter tube at high Reynolds number // Int. J. Heat Mass Transfer. 2017. Vol. 109. Pp. 997–1003.
33. Elistratov S. L., Vitovskii O. V., Slesareva E. Yu. Experimental investigation of heat transfer of helium-xenon mixtures in cylindrical channels // J. Engineering Thermophysics. 2015. Vol. 24. No.1. Pp. 33–35.