A numerical study of heat transfer processes in heat exchangers with diffuser channels with liquid coolants was carried out. Plate heat exchangers with channel expansion angles within a few degrees, which do not lead to separation of the flow from the wall, are considered. Due to the increase in heat exchange intensity in expanding channels, the heat transfer power with increasing expansion angle increases in comparison with heat exchangers with a constant channel cross-section. It is shown that when water is used as a «cold» coolant, the heat transfer power increases with increasing Prandtl number of «hot» coolants, which were mercury, water and transformer oil. The calculations used a three-parameter RANS model of turbulence, supplemented with a transport equation for turbulent heat flow.
heat exchanger, diffuser channel, RANS turbulence model
Пластинчатый теплообменник с диффузорными каналами с жидкими теплоносителями
Проведено численное исследование теплообменных процессов в теплообменниках с диффузорными каналами с жидкими теплоносителями. Рассмотрены пластинчатые теп-лообменники с углами расширения каналов в пределах нескольких градусов, не приво-дящими к отрыву потока от стенки. Показано, что за счет увеличения интенсивности теплообмена в расширяющихся каналах мощность теплопередачи с ростом угла расши-рения возрастает в сравнении с теплообменниками с постоянным сечением каналов. При использовании воды в качестве «холодного» теплоносителя мощность теплопередачи возрастает с ростом значения числа Прандтля «горячих» теплоносителей, в качестве которых рассматривались ртуть, вода и трансформаторное масло. Расчеты проводились с использованием трехпараметрической RANS-модели турбулентности, дополненной транспортным уравнением для турбулентного теплового потока.
течение с теплообменом, плоский диффузор, RANS-модель турбулентности
1. Migai, V. K., Povyshenie effektivnosti sovremennykh teploobmennikov (Improving the Efficiency of Modern Heat Exchangers), Leningrad: Energiya, 1980. [in Russian]. 2. Kalinin E. K., Dreytser G. A., Kopp I. Z., Myakochin A. S., Effective heat exchange surfaces, M.: Energoatomizdat, 1998. 408 p. [in Russian]. 3. Dzubenko B. V., Kuzma-Kichta Yu. A., Leontiev A. I., Fedik I. I., Kholpanov L. P., Intensification of heat and mass transfer at macro, micro and nanoscales, Moscow: FSUE «Tsniiatominform», 2008. 532 p. [in Russian]. 4. Bergles A. E. Recent developments in enhanced heat transfer, Heat Mass Transfer. 2011. Vol. 47(8). P. 1001. DOI:10.1007/s00231-011-0872-y 5. Leontiev A. I., Kiselev N. A., Burtsev S. A., Strongin M. M., Vinogradov Yu. A. Experimental investigation of heat transfer and drag on surfaces with spherical dimples, Experimental Thermal and Fluid Science. 2016. Vol. 79. P. 74. 6. Heat Exchanger Design Handbook, New York: Hemisphere, 1983, vols. 1–5 7. Reshmin A. I., Teplovodskii S. K., Trifonov V. V., Turbulent flow in a circular separationless diffuser at Reynolds numbers smaller than 2000, Fluid Dynamics , 2011, vol. 46, pp. 278–285. DOI: 10.1134/S0015462811020104 8. Lushchik V. G., Pavel'ev A. A., Yakubenko A. E., Three parameter model of shear turbulence, Fluid Dynamics , 1978, vol. 13, pp. 350–360. DOI: 10.1007/BF01050525 9. Lushchik V. G., Pavel’ev A. A., Yakubenko A.E. Turbulent flows. Models and numerical investigation. A review, Fluid Dynamics. 1994. Vol. 29. No. 4. P. 440–457. 10. Lushchik V. G., Pavel’ev A. A., Yakubenko A. E., Transport Equations for Turbulence Characteristics: Models and Results of Calculations, in: Advances in Science and Engineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series, 1988, vol. 22, p. 3. [in Russian] 11. Leont’ev A. I., Lushchik V. G., Reshmin A. I., Heat transfer in conical expanding channels, High Temp., 2016, vol. 54, pp. 270–276. DOI: 10.1134/S0018151X16020115 12. Lushchik V. G., Reshmin A. I., Heat transfer enhancement in a plane separation free diffuser, High Temp., 2018, vol. 56, pp. 569–575. DOI: 10.1134/S0018151X18040120 13. Lushchik, V. G., Makarova, M. S., Medvetskaya, N. V., and Reshmin, A. I., Numerical investigation of flow and heat transfer in plane channels of variable section Tepl. Protsessy Tekh., 2019, vol. 11, no. 9, p. 386–394. [in Russian]. 14. Lushchik V. G., Pavel’ev A. A., Yakubenko A. E. Three-parameter model of turbulence: Heat transfer calculations. Fluid Dynamics. 1986. Vol. 21. No. 2. P. 200–211. 15. Lushchik V. G., Pavel'ev A. A., Yakubenko A. E., Transfer equation for turbulent heat flux. Calculation of heat exchange in a pipe. Fluid Dynamics. 1988, vol. 23, pp. 835–842. DOI: 10.1007/BF01051816 16. Davletshin I. A,. Dushina O. A, Mikheev N. I, Shakirov R. R. Heat transfer and flow structure in a plane diverging channel. International Journal of Heat and Mass Transfer 189 (2022) 122744. 17. Shakirov R. R., Davletshin I. A. & Mikheev N. I., Kinematic structure of flow and the heat transfer in flat diffuser and confuser channels, Thermophys. Aeromech., 2022, vol. 29, pp. 759–764. https://doi.org/10.1134/S08698643220500146 18. Lushchik V. G, Reshmin A. I., Trifonov V. V. Effect of Inlet Conditions on the Flow and Heat Transfer in a Flat Diffuser. Physical-Chemical Kinetics in Gas Dynamics 2023 V 24(5). http://chemphys.edu.ru/issues/2023-24-5/articles/1066/ 19. Lushchik V. G, Reshmin A. I., Teplovodskii S. Kh, Trifonov V. V. Numerical Modeling of Flow and Heat Transfer in a Flat Confuser. Physical-Chemical Kinetics in Gas Dynamics 2024 V 25(1). http://chemphys.edu.ru/issues/2024-25-1/articles/1082/ 20. Lushchik, V. G., Makarova, M. S., Reshmin A. I. Plate Heat Exchanger with Diffuser Channels. High Temperature, 2020, Vol. 58, No. 3, pp. 352–359. DOI: 10.1134/S0018151X2003013X 21. Reshmin A. I., Lushchik, V. G., Makarova, M. S. Intensification of Heat Transfer in Heat Exchangers with Diffuser Channels. Physical-Chemical Kinetics in Gas Dynamics 2023 V 24(2). http://chemphys.edu.ru/issues/2023-24-2/articles/1030/ 22. Oriji U. R., Karimisani S., Tucker P. G. RANS Modeling of Accelerating Boundary Layers // J. Fluids Eng. Trans. ASME. 2015. V. 137(1). Paper A12.