The scheme of a supersonic ramjet, the combustion chamber of which is located behind the end wall of the aft of the flying vehicle, is considered. A numerical experiment is being carried out to simulate the combustion of hydrogen at an altitude of 16 km with a flight Mach number equal to 9. It is shown that the proposed engine scheme implements diffusion combustion, which under similar flight conditions is several times higher than continuous detonation combustion of hydrogen in a nozzle direct-flow combustion chamber in terms of thermal efficiency, specific thrust and impulse.
Сверхзвуковой ПВРД за кормой летательного аппарата
Рассматривается схема прямоточного сверхзвукового воздушно-реактивного двигателя, камера сгорания которого расположена за торцевой стенкой кормы летательного аппарата. Проводится численный эксперимент по моделированию горения водорода на высоте 16 км при полетном числе Маха равном 9. Показано, что в предлагаемой схеме двигателя реализуется диффузион-ное горение, которое в аналогичных условиях полета в разы превосходит непрерывное детонационное горение водорода в сопловой прямоточной камере сгорания по термическому КПД, удельной тяге и импульсу.
1. Hinkey, J. B., Williams, J. T., Henderson, S. E., and Bussing, T. R. A. AIAA Paper 97-2746. 1997. 2. Bussing, T. R. A. U.S. Patent Number 5345758. Sept. 13, 1994. 3. Ma F., Choi J-Y., Yang V. AIAA paper. 2004-0865. 2004. 4. Ma F., Jeong-Yeol Choi J-Y. , Yang V. Journal of propulsion and power. 2005, vol. 21, no. 4, pp. 681-691. 5. Eidelman S., Grossmann W., Lottati I. AIAA Paper 90-0460. 1990. 6. Zeldovich Y.B. Journal of Technical Physics. 1940, vol.10, no. 17,.pp. 1453-1461. 7. Tunik Yu.V. Fluid Dynamics, Pleiades Publishing.. 2014, vol. 49, no 5, pp. 688-693. 8. Tunik Yu.V. Fluid Dynamics. Pleiades Publishing 2011, Vol. 46, No. 5, pp. 775–781. 9. Zubin M.A., Tunik Yu.V. Fluid Dynamics, Pleiades Publishing. 2014, vol. 49, no 4, pp. 557-561 10. Godunov S.K. Mathematical collection. 1959, vol. 47 (89), no 3, pp. 271-306. 11. Tunik Yu. V. Computational Mathematics and Mathematical Physics. Pleiades Publishing. 2018, Vol. 58, No. 10, pp. 1573–1584. 12. Tunik Yu.V. Physicochemical kinetics in gas dynamics. Publishing House Institute of Mechanics, Moscow State University (Moscow). 2018, vol. 19, no. 1, pp.1-11. 13. Belotserkovsky O.M. Numerical modeling in the mechanics of continuous media. M. Science. 1994. 442 s. 14. Azatyan V.V., Andrianova Z.S., Ivanova A.N. Kin. and catalysis. 2012, vol. 51, no. 4, pp. 461-468. 15. Azatyan V.V., Andrianova Z.S., Borisov A.A., Ivanova A.N. Kinetics and catalysis. 2012, vol 53, no. 6, pp. 683-689. 16. Varnatz Yu., Maas W., Dibble R. Combustion. Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation..3. ed. Germany: N. p., 2001. Web. 309 p. 17. Starik A.M., Titova N.S., Sharipov A.S. Kinetic mechanism of H2-O2 ignition promoted by singlet oxygen O2(a1∆g). Deflagrative and detonative combustion. Ed. by G.D. Roy, S.M. Frolov. Torus 19Press. Moscow, 2010, pp. 12-19. 18. Gurvich L.V., Weitz I.V., Medvedev V.A. Thermodynamic properties of individual substances. Reference book, vol. 1, book 2. Moscow, Science. 1978, 327 p. 19. Sedov L.I. Mechanics of a continuous environment [Mechanics of a continuous media]. Moscow, Science, 1970, vol. 2, 568 p 20. Morley C. Gaseq: A Chemical Equilibrium Program for Windows. Version 0.79. 2005. http://www.gaseq.co.uk 21. Zubin M.A., Tunik Yu.V. Physicochemical kinetics in gas dynamics. Publishing House Institute of Mechanics, Moscow State University (Moscow), 2015, vol. 16, No. 3, p. 1-8 22. Aeromechanics of supersonic streamlining of bodies of rotation of power form. Ed. Dr. Fiz-mat. sciences prof. G.L. Grodzovsky. M., Mechanical Engineering, 1975, 184 p.