Experimental and numerical exploration of the influence of the shape of pin-fins on the friction factor of a finned tube

Rawad Deeb^{1,2}, A. A. Orlov¹

¹National Research University (Moscow Power Engineering Institute) Moscow, 111250, Russia
²Damascus University, Damascus, Syria
e.rawad.deeb@yandex.com, DeebR@mpei.ru

<u>rawad.deeb@yandex.com, DeebR@mpei.</u> <u>orlovaa@mpei.ru</u>

Abstract

In this study, the aerodynamic characteristics of tubes with circular and drop-shaped pin-fins were investigated using both experimental and numerical methods across a range of Reynolds numbers from 7.03×10^3 to 35.17×10^3 . Velocity and pressure contours were depicted and discussed. The findings revealed that the minimum friction factor for finned tubes are achieved for tubes with drop-shaped pin-fins, being approximately $(1.36 \div 7.95)$ % lower than those for circular pin-fins. The study also presents correlations that enable the estimation of the friction factor for finned tubes.

Keywords: drop-shaped tube, circular tube, fin, finned tube, heat exchanger, friction factor, experimental study, numerical study, Fluent.

Fig. 1. (a) Tube with circular pin-fins, (b) tube with drop-shaped pin-fins

Fig. 2. Friction factor vs Reynolds number across all examined scenarios.

УДК 532.5:004.414.23

Экспериментальное и численное исследование влияния формы шипов на коэффициент аэродинамического сопротивления оребренной трубы

Равад Дееб^{1,2}, А. А. Орлов¹

¹Национальный исследовательский университет «МЭИ», Россия, Москва, 111250, Красноказарменная, 14 ²Университет Дамаска, Дамаск, Сирия

> e.rawad.deeb@yandex.com, DeebR@mpei.ru orlovaa@mpei.ru

Аннотация

В данном исследовании были изучены характеристики аэродинамики труб с круглым и каплевидным шипованным оребрением как экспериментальным, так и численным методами в диапазоне чисел Рейнольдса $7.03 \times 10^3 \div 35.17 \times 10^3$. Были получены и описаны контуры скорости и давления. Результаты показали, что минимальные значения коэффициента сопротивления для шипованных труб достигаются у труб с каплевидным шипованным оребрением и составляют на $(1.36 \div 7.95)$ % меньше, чем у труб с цилиндрическим шипованным оребрением. В работе представлены зависимости, которые позволяют оценить коэффициент аэродинамического сопротивления для оребренных труб.

Ключевые слова: каплевидная труба, круглая труба, ребро, оребренная труба, теплообменник, коэффициент аэродинамического сопротивления, экспериментальное исследование, численное исследование, CFD, Fluent.

1. Введение

С учетом постоянного развития электроэнергетики и увеличения энергопотребления возникает неотложная задача совершенствования теплообменников. В связи с этим становится актуальным вопрос изучения наиболее эффективных видов оребрения [1, 2]. В ребристых трубчатых теплообменниках используются разнообразные типы ребер, начиная от относительно простых форм, таких как кольцевые, прямоугольные, продольные, квадратные и заканчивая комбинациями ребер различной геометрии.

Первые исследования пучков труб с разрезным оребрением были выполнены в работе [3], где основной акцент был сделан на шахматные пучки. Однако данные для расчета аэродинамического сопротивления были представлены исключительно в виде номограмм. В [4] проведены экспериментальные и численные исследования аэродинамических характеристик круглых, кубических и ромбовидных ребер. Было найдено, что относительно круглых шипованных ребер величина коэффициента аэродинамического сопротивления увеличивается примерно на $10 \div 15 \%$ и $15 \div 40 \%$ для кубических и ромбовидных ребер, соответственно. В работе [5] исследовано аэродинамическое сопротивление пучков труб с конфузорной подгибкой ребер. Было найдено, что увеличение подгибки увеличивает аэродинамическе сопротивление достигает на $8 \div 11 \%$. В [6] проведено экспериментальное исследование влияния плотности шипованных ребер на сопротивление незакрытого шипованного ребра радиатора. Было со-

здано шесть радиаторов с различным числом круглых рёбер. Результаты показали, что сопротивление представляет собой функцию скорости рабочего тела и не уменьшается с увеличением количества шипованных ребер. В [7] экспериментально исследован перепад давления при поперечном обтекании теплообменника с различными массивами сплошных шипованных шестиугольных, квадратных и круглых ребер при числах Рейнольдса от 11000 до 23000. Ребра размещены в коридорном порядке с разными относительными продольными шагами $S_L/D=2$, 2.8, 3.5 и постоянным относительным поперечным шагом $S_T/D = 2$. Результаты показали, что ребра круглого сечения имеют меньший перепад давления. Коэффициент трения возрастает при уменьшении расстояния между рёбрами. При Re = 32.500 и $S_T/D = 2$ коэффициент аэродинамического сопротивления для круглых ребер на 2.9 % меньше, чем для квадратных, и на 5.8 % меньше, чем для шестиугольных. Авторы работы [8] провели численное исследование вынужденной конвекции в радиаторах с микрошипованной структурой при наклонном и шахматном расположении шипованных ребер. Результаты указали на то, что при одинаковой мощности прокачки теплоотвод оребренных радиаторов оказывается ниже, чем у оптимальных простых микроканальных радиаторов, и наилучший теплоотвод достигается при наклонной ориентации наклонных коротких шипованных ребер. Кроме того, радиаторы с шипованными ребрами проявляются немного эффективнее (из-за более низкого коэффициента аэродинамического сопротивления), чем оптимальные простые микроканальные радиаторы при небольшой мощности прокачки. В [9] рассмотрены аэродинамическе характеристики радиаторов с использованием шипованных ребер и наножидкостей. Также представлены теплофизические свойства, поведение, производительность, проблемы, области применения, ограничения и будущие перспективы использования наножидкостей в электронных компонентах. В [10] проведен подробный численный анализ течения жидкости трехмерного микроканала с целью оценки влияния использования периодических вертикальных пористых и сплошных шипованных ребер различной геометрической формы, включая прямоугольные, эллиптические, передние треугольные и заднетреугольные. Установлено, что среди сплошных ребер наибольший перепад давления наблюдается у прямоугольных и заднетреугольных ребер, в то время как передний треугольник характеризуется наименьшим перепадом давления. Авторы работы [11] провели численный анализ микроканального радиатора с оребрением. Исследовано влияние количества сторон ребер (от 3 до 9), таких как кубовидной, треугольной, квадратной, пятиугольной, шестиугольной, цилиндрической, конусной, эллиптической, трапециевидной, и sобразной формы, на аэродинамические характеристики радиатора. Показано, что конструкции с четырьмя сторонами обладают лучшими характеристиками из-за заметного вторичного потока, способствующего эффективному смешиванию жидкости, в то время как конфигурации с тремя сторонами проявляют худшие характеристики. Было найдено, что увеличение количества сторон шипованного ребра с 5 до 9 приводит к практически незначительным изменениям аэродинамических характеристик. В работе [12] проведен сравнительный анализ открытой и закрытой конфигураций радиатора с микрошипованными ребрами с зазором между наконечниками составляют h = 0 %, 25 % и 50 % высоты канала. Рассмотрены ребра квадратного сечения, расположенные в коридорном порядке. Результаты показали, что зазор h = 25 % демонстрирует превосходные теплоаэродинамически характеристики среди всех конфигураций. Более того, радиатор с зазорами имеет меньшее падение давления до 15 % по сравнению с закрытым радиатором из-за уменьшения препятствий потоку. Обнаружено, что зазор оказывает положительное влияние на общие аэродинамические характеристики, но до определенного предела. В [13] указано, что плавный профиль шипованных ребер снижает гидравлическое сопротивление на 15÷30 %. Авторы [14] провели численное исследование аэродинамических характеристик одиночных микрошипованных ребер. Ребра имеют одинаковый диаметр для всех рассматриваемых форм: круглых, конусных, крыльев, прямоугольных, квадратных и треугольных. Было выявлено, что форма конуса имеет наименьшее значение коэффициента аэродинамического сопротивления.

Также были изучены кулачковые и каплевидные формы тел, представляющие собой форму тел с оптимальной аэродинамикой. Эти конфигурации способны объединять теплообменные характеристики, аналогичные круглым формам, с улучшенными аэродинамическими характеристиками, присущими овальным и эллиптическим формам. В эксперименте, описанном в работе [15], проведена оценка коэффициента аэродинамического сопротивления для шахматного расположения кулачковых труб. Диапазон чисел Рейнольдса составлял от 27000 до 42500. Результаты показали, что аэродинамические характеристики кулачковых труб примерно в 6 раз выше, чем у круглых труб. В работе [16] рассмотрены вопросы гидродинамики коридорного пучка, состоящего из кулачковых труб. Выявлено, что коэффициенты гидродинамического сопротивления кулачковых труб примерно на 64 % ниже, чем круглых. В [17] проведено комплексное исследование теплообмена двух расположенных бок о бок каплевидных труб с использованием как экспериментальных, так и численных методов для Re= 8000 -40000. Получено, что аэродинамическая сопротивления каплевидных труб превышает аналогичные показатели круглых труб в пределах от 0.5 до 1.5 раз. В работе [18] проведено сравнение аэродинамических характеристик разнообразных тел, включая круглую, плоскую, эллиптическую, кулачковую и каплевидную. Полученные результаты свидетельствовали о том, что значение коэффициента аэродинамического сопротивления каплевидных, кулачковых, эллиптических и плоских труб примерно на 81 %, 76 %, 72.5 % и 52.6 % соответственно меньше, чем у круглой трубы. В работе [19] численно использованы каплевидные трубы для контроля следа за круглыми цилиндрами и для подавления образования вихревой дорожки Кармана в диапазоне Re = $1000 \div 50000$ при углах формы $\beta = 30^{\circ} \div 90^{\circ}$. Показано, что коэффициент аэдродинамичиского сопротивления для каплевидной формы при $\beta = 30^{\circ}$ уменьшается примерно на 29 ÷ 31 % по сравнению с $\beta = 0^{\circ}$. Автор работ [20–28] провел обширные исследования каплевидных труб, уделяя особое внимание их теплогидравлическим характеристикам при $1.5 \times 10^3 \le \text{Re} \le 42 \times 10^3$. Результаты показали, что коэффициент аэродинамического сопротивления при обтекании каплевидной трубы при $\theta = 50^{\circ}$, 150° и 170° уменьшается на $61.62 \div 65.24$ %, 61.01 ÷ 61.16 % и 62.05 ÷ 68.82 % соответственно по сравнению с обтеканием круглой трубы. Максимальные значения компактности наблюдались при $\theta = 170^{\circ}$, что примерно на $437 \div 677 \%$ выше, чем у круглой трубы.

Из вышеизложенного можно отметить, что обтекание каплевидного тела способствует значительному снижению коэффициента аэродинамического сопротивления теплообменников по сравнению с телами других форм. Из обзора литературы следует, что рассматривались тела, близкие к телу каплевидной формы, такие как кулачковые тела и тела формы крыла. Кроме того, важно подчеркнуть, что теплообменники и лопатки газовых турбин обычно работают при высоких значениях числа Рейнольдса (до 100×10^3), тогда как микроканальные радиаторы работают при низких значениях Re (до 2×10^3). Поэтому предметом настоящей работы является экспериментальное и численное исследование аэродинамических характеристик трубы с каплевидными сплошными шипованными ребрами путем сравнения их с традиционными гладкими трубами и круглыми сплошными шипованными ребрами.

2. Экспериментальная установка и методика исследований

Экспериментальная установка представляет собой аэродинамическую трубу разомкнутого типа (рис. 1). Исследуемые трубы размещались в рабочем участке прямоугольного сечения длиной 288 мм, шириной 330 мм и высотой 320 мм, через которые воздух подавался вентилятором. Скорость воздуха регулировалась в диапазоне от 3 до 15 м/с посредством регулируемой диафрагмы. Три медные трубы были исследованы экспериментально и численно: гладкая круглая труба, труба со сплошными круглыми шипованными ребрами и труба с сплошными каплевидными шипованными ребрами, как показано на рис. 2. Ребра были установлены в коридорном порядке, с углом между ними 45°, продольным шагом 12 мм и высотой 10 мм. Диаметр круглого шипованного ребра $D_{3\kappa} = 3$ мм является эквивалентом диаметра шипованного ребра каплевидной формы. Каплевидные ребра имеют определенные размеры: радиус широкой части 0.8 мм, радиус малой части 0.4 мм и расстояние 2.8 мм между центрами узкой и широкой частей (рис. 3).

Рис. 1. Схема экспериментальной установки: набегающий поток (1); вентилятор (2); регулируемая диафрагма (3); рабочий участок (4); отбор статического давления (5); регистратор температурных данных (6); исследуемая труба (7); регулирующий клапан (8); трубка Пито (9); перепускной клапан (10); насос (11); расходомер (12); резервуар для горячей воды (13); нагревательный элемент (14)

Для измерения скорости набегающего потока использовалась статическая трубка Пито. Перепад давления в рабочем участке определялся с использованием дифференциального манометра HT-1890, который был подключен к штуцерам на входе и выходе рабочего участка. Погрешность измерения дифференциального манометра составляет 3 %.

Для прогрева трубы использовался насос, который циркулировал горячую воду между резервуаром и трубами. Электрический нагревательный элемент применялся для подачи горячей воды, а регулирующий клапан регулировал подачу горячей воды на входе в трубу. Расходомер со стеклянной трубой измерял массовый расход воды с точностью 1 %.

Температура воды регистрировалась на входе и выходе трубы с помощью проводов термопар типа К, а данные фиксировались с интервалом в одну секунду при помощи регистратора данных. Температура поверхности трубы измерялась путем прикрепления двух проводов термопары к внешней поверхности трубы. Средняя температура трубы принималась как среднее значение двух термопар, прикрепленных к ее поверхности. Температура воздуха на входе в аэродинамическую трубу измерялась ртутным термометром с погрешностью 0.1° С. В проведенных экспериментах температура внутренней стенки трубки поддерживалась постоянной 76° С. Для этого применялась система циркуляции горячей воды с регулирующим клапаном, что позволило точно контролировать температуру независимо от типа исследуемой трубы. Это было необходимо для обеспечения адекватных условий теплопередачи для каждого варианта трубы и различных скоростей воздушного потока. При изменении скорости воздушного потока, средняя температура внешней поверхности трубы тоже изменялась (табл. 1). В ходе экспериментов были достигнуты стационарные условия течения, после чего начался сбор данных.

Таблица 1

и, м/с	3	5	7	9	11	13	15
Гладкая труба	75.84	75.81	75.78	75.75	75.72	75.69	75.67
труба с круглыми шипован- ным оребрением	74.48	73.98	73.61	73.34	73.06	72.93	72.64
труба с каплевидным шипо- ванным оребрением	74.09	73.29	72.63	72.12	71.25	71.21	70.87

Средняя температура внешней поверхности трубы при различных скоростях воздушного потока, °С

Рис. 2. Объект исследования: гладкая круглая труба (*a*); труба с круглыми шипованным оребрением (*б*), труба с каплевидным шипованным оребрением (*в*) крубный вид трубы с круглыми ребрами (*г*); крубный вид трубы с каплевидными ребрами (*д*); круглое ребро (*e*); каплевидное ребро (*ж*); вид каплевидных ребер, расположенных на верхней половине трубы «вид I» (*з*); вид каплевидных ребер, расположенных на нижней половине трубы «вид II» (*и*)

Рис. 3. Поперечное сечение каплевидного и цилиндрического ребра (a), поперечное сечение трубы с каплевидными ребрами (δ)

Гидравлический диаметр определяется как отношение рабочего участка, доступного для потока воздуха, к общей площади смачиваемой поверхности внутри области массива шипованных ребер. Это соотношение является наиболее подходящей характеристической длиной, поскольку оно репрезентативно для различных исследованных конфигураций ребер и отражает влияние всех масштабов длины.

$$D_{\rm гидр} = \frac{4V}{F},\tag{1}$$

где V – общий объем жидкости внутри области массива шипованных ребер; F – площадь смачиваемой поверхности, которая определяется как общая площадь конвективной теплоотдачи, контактирующая с охлаждающей жидкостью. Общая площадь конвективной теплопередачи включает в себя стенки и ребра, контактирующие с жидкостью.

Число Рейнольдса рассчитывалось по соотношению

$$\operatorname{Re}_{D,\max} = \frac{\rho u_{\rm cp} D_{\rm rugp}}{\mu}, \qquad (2)$$

где *р* – плотность; *µ* – коэффициент динамической вязкости.

Средняя скорость потока в узком сечении рабочего участка и определяется как

$$u_{\rm cp} = \left(\frac{F_{\rm K}}{F_{\rm K} - F_{\rm \phi}}\right) u_{\rm BX} , \qquad (3)$$

где $F_{\rm k}$ – поперечное сечение канала, м²; $F_{\rm d}$ – фронтальная площадь шипов, м².

Коэффициент аэродинамического сопротивления

$$f = \frac{2\Delta P D_{\text{гидр}}}{\rho u_{\text{cp}}^2 L},\tag{4}$$

где ΔP – перепад давления между входом и выходом рабочего участка; L – длина рабочего участка.

3. Численное исследование

3.1. Постановка задачи и граничные условия

Трёхмерная вычислительная область создана с помощью ANSYS SpaceClaim (рис. 4). Расчетная область представляет собой канал прямоугольного сечения длиной 288 мм, шириной 330 мм и высотой 320 мм, но стоит отметить, что из-за ограничения скорости вычисления компьютера для моделирования всей геометрии численное исследование проводился с сечением, представляющим 1/10 длины исходной трубы (см. рис. 2, 3), т.е. 33 мм.

Рис. 4. Расчетная область с граничными условиями

Поток воздуха считается стационарным и несжимаемым, поскольку максимальное число Маха, достигаемое потоком, составляет 0.055.

Ниже приведены основные уравнения сохранения в декартовых координатах.

Уравнение сохранения массы

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
(5)

Уравнение сохранения импульса

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right),\tag{6, a}$$

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + v\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right),\tag{6,6}$$

$$u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z} = -\frac{1}{\rho}\frac{\partial p}{\partial z} + v\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)$$
(6, в)

Уравнение сохранения энергии

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} + w\frac{\partial T}{\partial y} = a\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right),\tag{7}$$

где u, v, w – скорости воздуха в направлениях x, y и z, соответственно; v – кинематическая вязкость; p – давление; T – температура; a – коэффициент теплопроводности.

Для замыкания осредненной по Рейнольдсу системы уравнений Навье – Стокса при моделировании течений рабочей среды во всех вариантах применялась двухпараметрическая модель турбулентности RNG $k - \varepsilon$ с использованием метода пристеночного моделирования (*Enhanced Wall Treatment*) [27–29]. Окончание расчета происходило при достижении порядка погрешности решения уравнения энергии 10⁻⁶ и 10⁻⁴ для других уравнений.

В качестве внешнего теплоносителя рассматривался поток воздуха со скоростью на входе в канал $u_{\text{вх}} = 3 \div 15 \text{ м/c}$, что соответствует числам Рейнольдса $\text{Re} = 7.03 \times 10^3 \div 35.17 \times 10^3$, при температуре $T_{\text{вх}} = 25^{\circ}\text{C}$ и атмосферном давлении p = 1 атм. Температура внутренней поверхности трубы $T_{\text{труб}} = 76^{\circ}\text{C}$. Численное моделирование всех исследованных труб имеет одинаковые граничные условия. Теплофизические свойства рассчитываются по средней температуре набегающего потока. Свойства воздуха и воды для обоих определялись по таблицам [30]. Граничные условия, заданные в ANSYS Fluent показаны на рис. 4.

3.2. Расчетная сетка

Расчетная сетка генерируется с использованием Mesh (рис. 5). Для наиболее точного моделирования сетка (включающая гексаэдрические и тетраэдрические ячейки) конструируется со сгущением в областях наибольшего градиента скорости и давления, обеспечивая соответствие требованиям указанной модели турбулентности на основе значения $0 < y^+ < 1$. Для всех исследуемых случаев минимальное качество сетки установлено на уровне 0.96.

Плотность сетки варьировалась от 121428 до 1071429 ячеек для гладкой трубы и от 200000 до 3200000 ячеек для сплошных шипованных труб с целью определения коэффициента аэродинамического сопротивления при Re=35.17×10³. Как показано на рис. 6, сетка из 971429 и 2961024 ячеек обеспечивает сеточно-независимое решение для гладкой трубы и шипованных труб, соответственно. Следовательно, сетки с данными параметрами выбраны для дальнейшего анализа.

Рис. 5. Расчетная сетка и ее детали вокруг труб: гладкая труба (a); оребренная труба (b); труба с круглыми шипованным оребрением (b); труба с каплевидным шипованным оребрением (c)

Рис. 6. Анализ чувствительности сетки

4. Результаты исследований и их обсуждение

На рис. 7 показаны контуры скоростей для гладкой трубы и труб с цилиндрическим и каплевидным шипованным оребрением при минимальном и максимальном числах Рейнольдса. Видно, что значения скорости для шипованных оребренных труб (рис. 7, δ и ϵ) больше, чем у гладкой трубы (рис. 7, a). Это можно объяснить уменьшением площади живого сечения канала в случае шипованного оребрения. Также, было найдено, что максимальные значения скорости в случае цилиндрического оребрения больше по сравнению с каплевидным оребрением. Это обусловлено обтекаемой формой каплевидной трубы [22, 23]. Для всех исследованных случаев увеличение числа Рейнольдса приводит к увеличению перемешивания жидкости за ребрами и в кормовой части трубы.

Рис. 7. Контуры скорости *U*, м/с: гладкая труба (*a*); труба с цилиндрическим шипованным оребрением (*б*); труба с каплевидным шипованным оребрением (*в*)

На рис. 8 представлены контуры статического давления (избыточное, по отношению к атмосферному, давление) при $\text{Re}=7.03\times10^3$ и $\text{Re}=35.17\times10^3$. Видно, что изменение геометрии ребер сильно влияет на контур давления. В случае гладкой круглой трубы (рис. 8, *a*), давление имеет самые высокие значения в лобовой части труб в точке торможения, это связано с тем, что в этой точке скорость потока стремится к нулю (см. рис. 6, *a*). Оребренные трубы (рис. 8, *б*, *в*) демонстрируют максимальные значения давления в диапазоне от -45° до $+45^\circ$ и

на частях ребер, непосредственно подвергающихся воздействию потока, так как эти области представляют собой препятствие для потока. Распределение давления для трубы с каплевидным шипованным оребрением отличается по симметрии от гладкой трубы или трубы с цилиндрическим шипованным оребрением. Это наблюдение можно объяснить зависимостью коэффициента аэродинамического сопротивления трубы с каплевидным шипованным оребрением от угла атаки, поскольку картина течения вокруг ребер меняется под разными углами атаки в зависимости от числа Рейнольдса [22, 23]. Результаты показывают, что труба с цилиндрическим шипованным оребрением демонстрирует более высокие значения перепада давления, в то время как гладкая труба характеризуется более низкими значениями ΔP . Кроме того, перепад давления трубы с каплевидным шипованным оребрением, что объясняется задержкой отрыва пограничного слоя от поверхности каплевидного тела. Было найдено, что с ростом числа Рейнольдса давление также возрастает за счет увеличения интенсивности турбулентности.

Рис. 8. Контуры статического давления P, Па: гладкая труба (a); труба с цилиндрическим шипованным оребрением (δ); труба с каплевидным шипованным оребрением (e)

На рис. 9 изображена зависимость коэффициента аэродинамического сопротивления от числа Рейнольдса. Видно, что при увеличении числа Рейнольдса происходит уменьшение коэффициента аэродинамического сопротивления. Это можно связать с сужением турбулентного следа и перемещением точки отрыва пограничного слоя ниже по течению, что вызвано тем, что при больших числах Рейнольдса перенос импульса внутри пограничного слоя при его турбулизации возрастает и на границе турбулентного пограничного слоя происходит энергичное перемешивание частиц этого слоя и внешнего потока. Более того, было найдено, что для трубы с каплевидным шипованным оребрением коэффициент аэродинамического сопротивления меньше на $(1.36 \div 7.95)$ %, чем для трубы с цилиндрическим шипованным оребрением для изучаемого числа Рейнольдса. Анализ рис. 7 показывает, что при максимальном числе Рейнольдса площадь вихря для трубы с каплевидным шипованным оребрением сопротивление с цилиндрическими, что также влияет на аэродинамическое сопротивление. Коэффициент аэродинамического сопротивления для гладкой трубы примерно на $(23.61 \div 45.79)$ % и $(29.47 \div 48.91)$ % меньше, чем для труб с каплевидным и цилиндрическим шипованным оребрением, соответственно. Это можно объяснить тем, что ребра создают увеличенное сопротивления. Представленные на рис. 9 результаты демонстрируют близкое соответствие численных и экспериментальных данных, с максимальным отклонением 4.78 %.

Эксп., гладкая труба [30] 0 Эксп., труба с кругл. шип. оребрением Δ Эксп., труба с капл. шип. оребрением × ANSYS, гладкая труба ANSYS, труба с кругл. шип. оребрением ANSYS, труба с капл. шип. оребрением 0.05 1,8422Re^{-0,4092} D,max 0.04 0.03 0.02 0.01 0 10000 20000 30000 40000 50000 Re_{D,max}

Рис. 9. Зависимость $f = f(\text{Re}_{D,\text{max}})$

Формулы (8) и (9) применимы для $7.03 \times 10^3 \le \text{Re} \le 35.17 \times 10^3$ ($8.2 \times 10^3 \le \text{Re}_{D,\text{max}} \le 48.52 \times 10^3$), где $\text{Re}_{D,\text{max}}$ число Рейнольдса, рассчитанное по средней скорости потока в узком сечении [11, 12]. Максимальное отклонение предложенной корреляции составляет 0.73 %.

Зависимости коэффициента гидродинамического сопротивления для оребренных труб, состоящих из круглых и каплевидных ребер, были получены на основе данных моделирования следующим образом:

Для трубы с каплевидным шипованным оребрением

$$f = 1.8422 \operatorname{Re}_{D,\max}^{-0.4092} \tag{8}$$

Для трубы с цилиндрическим шипованным оребрением

$$f = 1.4671 \operatorname{Re}_{\mathrm{D,max}}^{-0.3798} \tag{9}$$

Соотношения (8, 9) применимы для $8.2 \times 10^3 \le \text{Re}_{D,\text{max}} \le 48.52 \times 10^3$ и числа Прандтля воздуха Pr ≈ 0.7 . Максимальное отклонение предложенной корреляции составляет 0.73 %.

5. Заключение

Экспериментально и численно исследованы характеристики аэдродинамики труб с цилиндрическим и каплевидным шипованным оребрением. Исследование охватывало числа Рейнольдса от 7.03×10^3 до 35.17×10^3 . Результаты были сравнены с гладкой трубой. Были получены следующие основные выводы:

- 1. Аэродинамическое сопротивление для всех труб уменьшается с увеличением Re.
- 2. Значение коэффициента аэродинамического сопротивления для гладкой трубы примерно на (23.61 ÷ 45.79) % и (29.47 ÷ 48/91) % меньше, чем для труб с каплевидным и цилиндрическим шипованным оребрением, соответственно.
- 3. Минимальные значения *f* для оребренных труб были достигнуты для трубы с каплевидным шипованным оребрением и были на (1.36÷7.95)% меньше, чем у трубы с цилиндрическим шипованным оребрением.
- 4. Представлены зависимости, позволяющие определить коэффициент аэродинамического сопротивления для оребренных труб, в зависимости от Re_{D,max}.

Литература

- 1. Polat M.E., Cadirci S. Artificial neural network model and multi-objective optimization of microchannel heat sinks with diamond-shaped pin fins // *International Journal of Heat and Mass Transfer*, 2022, Vol. 194, No. 17, p. 123015. DOI: <u>https://linkinghub.elsevier.com/retrieve/pii/S0017931022004884</u>
- Ravanji A., Zargarabadi M.R. Effects of elliptical pin-fins on heat transfer characteristics of a single impinging jet on a concave surface // International Journal of Heat and Mass Transfer, 2020, Vol. 152, p. 119532. DOI: <u>https://doi.org/10.1016/j.ijheatmasstransfer.2020.119532</u>
- 3. Weierman C. Correlations Ease the Selection of Finned Tubes // *Oil and Gas Journal*, 1976, Vol. 74, pp. 94–100.
- 4. Hussein M.A., Hameed V.M., Dhaiban H.T. An implementation study on a heat sink with different fin configurations under natural convective conditions // *Case Studies in Thermal Engineering*, 2022, Vol. 30, p. 101774. DOI: <u>https://doi.org/10.1016/j.csite.2022.101774</u>
- 5. Письменный Е.Н., Терех А.М., Семеняко А.В., Руденко А.И., Бурлей В.Д. Теплообмен и аэродинамическое сопротивление шахматных пакетов би-металлических труб с конфузорной подгибкой поперечных ребер // Энергетика, энергосберегающие технологии и оборудование, 2011, Т. 11, С. 99–107.
- Azar K., Mandrone C.D. Effect of pin fin density on the thermal performance of unshrouded pin fin heat sinks // *Transactions-American Society of Mechanical Engineers Journal of Electronic Packaging*, 1994, Vol. 116, pp. 306–306. DOI: <u>https://doi.org/10.1115/1.2905702</u>
- Kotcioglu I., Caliskan S., Baskaya S. Experimental study on the heat transfer and pressure drop of a cross-flow heat exchanger with different pin–fin arrays // *Heat and Mass Transfer*, 2011, Vol. 47, pp. 1133-1142. DOI: <u>https://doi.org/10.1007/s00231-011-0779-7</u>
- Haleh S., Omid A., Khosrow J., Goodarz A. Numerical study of heat transfer performance of singlephase heat sinks with micro pin-fin structures // *Applied Thermal Engineering*, 2013, Vol. 58, No. 1-2, pp. 68–76. DOI: <u>https://doi.org/10.1016/j.applthermaleng.2013.04.008</u>
- Maghrabie H.M., Olabi A.G., Sayed E.T., Wilberforce T., Elsaid K., Doranehgard M.H., Abdelkareem M.A. Microchannel heat sinks with nanofluids for cooling of electronic components: performance enhancement, challenges, and limitations // *Thermal Science and Engineering Progress*, 2023, Vol. 37, p. 101608. DOI: <u>https://doi.org/10.1016/j.tsep.2022.101608</u>
- Lori M.S., Vafai K. Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs // *Applied Thermal Engineering*, 2022, Vol. 205, p. 118059. DOI: <u>https://doi.org/10.1016/j.applthermaleng.2022.118059</u>

- Bhandari P., Padalia D., Ranakoti L., Khargotra R., Andras K., Singh T. Thermohydraulic investigation of open micro prism pin fin heat sink having varying prism sides // *Alexandria Engineering Journal*, 2023, Vol. 69, pp. 457–468. DOI: <u>https://doi.org/10.1016/j.aej.2023.02.016</u>
- Bhandari P., Prajapati Y.K. Influences of tip clearance on flow and heat transfer characteristics of open type micro pin fin heat sink // *International Journal of Thermal Sciences*, 2022, Vol. 179, p. 107714. DOI: <u>https://doi.org/10.1016/j.ijthermalsci.2022.107714</u>
- Дрейцер Г.А., Мякочкин А.С., Щербаченко И.К. Экспериментальные исследования влияния геометрической формы турбулизаторов на интенсивность теплообмена в трубах // Труды РНКТ, 2002, Т. 3, С. 96–100.
- Izci T., Koz M., Kosar A. The effect of micro pin-fin shape on thermal and hydraulic performance of micro pin-fin heat sinks // *Heat Transfer Engineering*, 2015, Vol. 36, No. 17, pp. 1447–1457. DOI: <u>https://doi.org/10.1080/01457632.2015.1010921</u>
- Bayata H., Lavasani A.M., Maarefdoosta T. Experimental study of thermal-hydraulic performance of cam-shaped tube bundle with staggered arrangement // Energy Conversion and Management, 2014, Vol. 85, pp. 470–476. DOI: <u>https://doi.org/10.1016/j.enconman.2014.06.009</u>
- Lavasani A.M., Bayat H., Maarefdoost T. Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow // *Applied Thermal Engineering*, 2016, Vol. 65, No. 1-2, pp. 85–93. DOI: <u>https://doi.org/10.1016/j.applthermaleng.2013.12.078</u>
- Zhukova Yu.V., Terekh A.M., Rudenko A.I. Convective heat transfer and drag of two side-by-side tubes in the narrow channel at different Reynolds number // *Doklady of the National Academy of Sciences of Belarus*, 2018, Vol. 62, No. 6, pp. 756–762. DOI: <u>https://doi.org/10.29235/1561-8323-2018-62-6-756-762</u>
- Deeb R., Sidenkov D.V. Numerical analysis of heat transfer and fluid flow around circular and noncircular tubes // *IOP Conf. Series: Journal of Physics*, 2021, Vol. 2088, No. 1. DOI: https://doi.org/10.1088/1742-6596/2088/1/012008
- Wang J., Zheng H., Tian Z. Numerical simulation with a TVD-FVM method for circular cylinder wake control by a fairing // *Journal of Fluids and Structures*, 2015, Vol. 57, pp. 15–31. DOI: <u>https://doi.org/10.1016/j.jfluidstructs.2015.05.008</u>
- 20. Дееб Р. Влияние продольного расстояния на гидродинамические характеристики и теплообмен при поперечном обтекании шахматного пучка труб каплевидной формы // Физико-химическая кинетика в газовой динамике, 2020, Т. 21, вып. 1. http://chemphys.edu.ru/issues/2020-21-1/articles/878/
- 21. Дееб Р. Влияние угла атаки на теплообменные и гидродинамические характеристики шахматного пучка труб каплевидной формы в поперечном обтекании// *Доклады АН ВШ РФ*., 2020, Т. 48, No. 3, C. 21–36. DOI: <u>http://dx.doi.org/10.17212/1727-2769-2020-3-21-36</u>
- 22. Дееб Р. Экспериментальное и численное исследование влияния угла атаки на характеристики воздушного потока при обтекании одиночной каплевидной трубы // Физико-химическая кинетика в газовой динамике, 2021, Т. 22, вып. 2. <u>http://chemphys.edu.ru/issues/2021-22-2/articles/932/</u>
- 23. Дееб Р. Влияние угла атаки на характеристики теплообмена при обтекании одиночной каплевидной трубы // Физико-химическая кинетика в газовой динамике, 2021, Т. 22, вып. 5. <u>http://chemphys.edu.ru/issues/2021-22-5/articles/960/</u>
- Deeb R., Kolotvin A.V., Sidenkov D.V. Evaluation of turbulence models for flow and heat transfer of drop-shaped tubes // Journal of International Academy of Refrigeration, 2022, No. 2, pp. 61–69. DOI: <u>https://doi.org/10.17586/1606-4313-2022-21-2-61-69</u>
- 25. Deeb R. Numerical analysis of the effect of longitudinal and transverse pitch ratio on the flow characteristics of staggered drop-shaped tubes bundle // Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, Vol. 106, No. 1, pp. 95–116. DOI: <u>https://doi.org/10.18698/1812-3368-2023-1-95-116</u>

- 26. Дееб Р. Теплоаэродинамические характеристики шахматного смешанного пучка круглых и каплевидных труб // Физико-химическая кинетика в газовой динамике, 2022, Т. 23, вып. 2. http://chemphys.edu.ru/issues/2022-23-2/articles/987/
- 27. Дееб Р., Сиденков Д.В. Повышение эффективности пучков каплевидных труб за счет управления углом атаки // Физико-химическая кинетика в газовой динамике, 2023, Т. 24, вып. 3. <u>http://chemphys.edu.ru/issues/2023-24-3/articles/1042/</u>
- 28. Дееб Р. Снижение коэффициента гидродинамического сопротивления пучка каплевидных труб за счет изменения углов атаки // Тепловые процессы в технике, 2023, Т. 15, No. 5, C. 222–233. DOI: <u>https://doi.org/10.34759/tpt-2023-15-5-222-233</u>
- 29. ANSYS Fluent Reference Guide. ANSYS. Inc. Release 16.0, 2015.
- 30. Cengel Y.A. Heat Transfer: A Practical Approach // McGraw-Hill, New Jersey, 2002, Vol. 2, p. 932.

References

1. Polat M.E., Cadirci S., Artificial neural network model and multi-objective optimization of microchannel heat sinks with diamond-shaped pin fins, *International Journal of Heat and Mass Transfer*, 2022, vol. 194, no. 17, p. 123015.

DOI: https://linkinghub.elsevier.com/retrieve/pii/S0017931022004884

- Ravanji A., Zargarabadi M.R., Effects of elliptical pin-fins on heat transfer characteristics of a single impinging jet on a concave surface, *International Journal of Heat and Mass Transfer*, 2020, vol. 152, p. 119532. DOI: <u>https://doi.org/10.1016/j.ijheatmasstransfer.2020.119532</u>
- 3. Weierman C., Correlations Ease the Selection of Finned Tubes, *Oil and Gas Journal*, 1976, vol. 74, pp. 94–100.
- Hussein M.A., Hameed V.M., Dhaiban H.T., An implementation study on a heat sink with different fin configurations under natural convective conditions, *Case Studies in Thermal Engineering*, 2022, vol. 30, p. 101774. DOI: <u>https://doi.org/10.1016/j.csite.2022.101774</u>
- 5. Pismenny E.N., Terekh A.M., Semenyako A.V., Rudenko A.E., Burley V.D., Heat transfer and aerodynamic resistance of staggered bundles of bimetallic tubes with confuser bending of transverse fins, *Energy, energy-saving technologies and equipment*, 2011, vol. 11, pp. 99–107 [in Russian].
- 6. Azar K., Mandrone C.D., Effect of pin fin density on the thermal performance of unshrouded pin fin heat sinks, *Transactions-American Society of Mechanical Engineers Journal of Electronic Packaging*, 1994, vol. 116, pp. 306–306. DOI: https://doi.org/10.1115/1.2905702
- Kotcioglu I., Caliskan S., Baskaya S., Experimental study on the heat transfer and pressure drop of a cross-flow heat exchanger with different pin–fin arrays, *Heat and Mass Transfer*, 2011, vol. 47, pp. 1133–1142. DOI: <u>https://doi.org/10.1007/s00231-011-0779-7</u>
- Haleh S., Omid A., Khosrow J., Goodarz A., Numerical study of heat transfer performance of singlephase heat sinks with micro pin-fin structures, *Applied Thermal Engineering*, 2013, vol. 58, no. 1-2, pp. 68–76. DOI: <u>https://doi.org/10.1016/j.applthermaleng.2013.04.008</u>
- Maghrabie H.M., Olabi A.G., Sayed E.T., Wilberforce T., Elsaid K., Doranehgard M.H., Abdelkareem M.A., Microchannel heat sinks with nanofluids for cooling of electronic components: performance enhancement, challenges, and limitations, *Thermal Science and Engineering Progress*, 2023, vol. 37, p. 101608. DOI: <u>https://doi.org/10.1016/j.tsep.2022.101608</u>
- Lori M.S., Vafai K., Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs, *Applied Thermal Engineering*, 2022, Vol. 205, p. 118059. DOI: <u>https://doi.org/10.1016/j.applthermaleng.2022.118059</u>
- Bhandari P., Padalia D., Ranakoti L., Khargotra R., Andras K., Singh T., Thermohydraulic investigation of open micro prism pin fin heat sink having varying prism sides, *Alexandria Engineering Journal*, 2023, vol. 69, pp. 457–468. DOI: <u>https://doi.org/10.1016/j.aej.2023.02.016</u>

- Bhandari P., Prajapati Y.K., Influences of tip clearance on flow and heat transfer characteristics of open type micro pin fin heat sink, *International Journal of Thermal Sciences*, 2022, vol. 179, p. 107714. DOI: <u>https://doi.org/10.1016/j.ijthermalsci.2022.107714</u>
- 13. Dreitser G.A., Myakochkin A.S., Shcherbachenko I.K., Experimental studies of the influence of the geometric shape of turbulators on the intensity of heat transfer in tubes, *Proceedings of the RNKT*, 2002, vol. 3, pp. 96–100.
- Izci T., Koz M., Kosar A., The effect of micro pin-fin shape on thermal and hydraulic performance of micro pin-fin heat sinks, *Heat Transfer Engineering*, 2015, vol. 36, no. 17, pp. 1447–1457. DOI: <u>https://doi.org/10.1080/01457632.2015.1010921</u>
- Bayata H., Lavasani A.M., Maarefdoosta T., Experimental study of thermal-hydraulic performance of cam-shaped tube bundle with staggered arrangement, *Energy Conversion and Management*, 2014, vol. 85, pp. 470–476. DOI: <u>https://doi.org/10.1016/j.enconman.2014.06.009</u>
- Lavasani A.M., Bayat H., Maarefdoost T., Experimental study of convective heat transfer from in-line cam shaped tube bank in crossflow, *Applied Thermal Engineering*, 2016, vol. 65, no. 1–2, pp. 85–93. DOI: <u>https://doi.org/10.1016/j.applthermaleng.2013.12.078</u>
- Zhukova Yu.V., Terekh A.M., Rudenko A.I., Convective heat transfer and drag of two side-by-side tubes in the narrow channel at different Reynolds number, *Doklady of the National Academy of Sciences of Belarus*, 2018, vol. 62, no. 6, pp. 756–762. DOI: <u>https://doi.org/10.29235/1561-8323-2018-62-6-756-762</u>
- Deeb R., Sidenkov D.V., Numerical analysis of heat transfer and fluid flow around circular and noncircular tubes, *IOP Conf. Series: Journal of Physics*, 2021, vol. 2088, no. 1. DOI: <u>https://10.1088/1742-6596/2088/1/012008</u>
- Wang J., Zheng H., Tian Z., Numerical simulation with a TVD-FVM method for circular cylinder wake control by a fairing, *Journal of Fluids and Structures*, 2015, vol. 57, pp. 15–31. DOI: https://doi.org/10.1016/j.jfluidstructs.2015.05.008
- 20. Deeb R., Effect of Longitudinal Spacing on The Flow and Heat Transfer for Staggered Drop-shaped Tubes Bundle in Cross-flow, *Physical-Chemical Kinetics in Gas Dynamics*, 2020, vol. 21, no. 1. <u>http://chemphys.edu.ru/issues/2020-21-1/articles/878/</u>
- Deeb R., Effect of angle of attack on heat transfer and hydrodynamic characteristics for staggered dropshaped tubes bundle in cross-flow, *Proceedings of the Russian higher school Academy of Sciences*, 2020, vol. 48, no. 3, pp. 21–36 [in Russian]. DOI: <u>http://dx.doi.org/10.17212/1727-2769-2020-3-21-36</u>
- 22. Deeb R., Experimental and numerical investigation of the effects of angle-of-attack on air flow characteristics for single drop-shaped tube, *Physical-Chemical Kinetics in Gas Dynamics*, 2021, vol. 22, no. 2 [in Russian]. DOI: <u>http://chemphys.edu.ru/issues/2021-22-2/articles/932/</u>
- Deeb R., The effect of angle-of-attack on heat transfer characteristics of a single drop-shaped tube, International Journal of Heat and Mass Transfer, 2022, vol. 183, part B. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.122115
- Deeb R., Kolotvin A.V., Sidenkov D.V., Evaluation of turbulence models for flow and heat transfer of drop-shaped tubes, *Journal of International Academy of Refrigeration*, 2022, no. 2, pp. 61–69. DOI: <u>https://doi.org/10.17586/1606-4313-2022-21-2-61-69</u>
- 25. Deeb R., Numerical analysis of the effect of longitudinal and transverse pitch ratio on the flow characteristics of staggered drop-shaped tubes bundle, *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2023, vol. 106, no. 1, pp. 95–116. DOI: <u>https://doi.org/10.18698/1812-3368-2023-1-95-116</u>
- 26. Deeb R., Thermal-aerodynamic characteristics of staggered mixed tubes bundle composed of circular and drop-shaped tubes, *Physical-Chemical Kinetics in Gas Dynamics*, 2022, vol. 23, no. 2 [in Russian]. DOI: <u>http://chemphys.edu.ru/issues/2022-23-2/articles/987/</u>

- 27. Deeb R., Sidenkov D.V., Improving the efficiency of drop-shaped tube bundles by controlling the angle of attack, *Physical-Chemical Kinetics in Gas Dynamics*, 2023, vol. 24, no. 3 [in Russian]. DOI: http://chemphys.edu.ru/issues/2023-24-3/articles/1042/
- Deeb R., Hydrodynamic resistance coefficient reduction of the drop-shaped pipe bundle due to the angle of attack changing, *Thermal Processes in Engineering*, 2023, vol. 15, no. 5, pp. 222–233.
 DOI: <u>https://doi.org/10.34759/tpt-2023-15-5-222-233</u>
- 29. ANSYS Fluent Reference Guide. ANSYS. Inc. Release 16.0, 2015.
- 30. Cengel Y.A., Heat Transfer: A Practical Approach, McGraw-Hill, New Jersey, 2002, vol. 2, 932 p.

Статья поступила в редакцию 04 апреля 2024 г.