НЕКОТОРЫЕ ОСОБЕННОСТИ ИЗМЕРЕНИЯ И ИНТЕРПРЕТАЦИИ ВРЕМЕНИ ИНДУКЦИИ ВОСПЛАМЕНЕНИЯ ВОДОРОДО – КИСЛОРОДНЫХ СМЕСЕЙ ЗА ФРОНТОМ УДАРНОЙ ВОЛНЫ

В.А.Павлов

Институт механики Московского государственного университета им. М.В. Ломоносова. г. Москва

pavlov@imec.msu.ru

Аннотация

времена задержки τ образования радикала ОН* при В работе экспериментально измерены воспламенении водородо-кислородных смесей, разбавленных аргоном (79-97%) в ударных волнах в диапазоне температур Т=900-3000К, давлений Р=0.5-2.5атм., и составов H₂/O₂= 20-0.2. Обнаружена практически пропорциональная зависимость величины τ от обратного парциального стехиометрического давления 1/Рпс независимо от состава газа в этих условиях. Сравнение результатов данной работы с данными других авторов [7-11] по величине тР_{ПС} показало хорошее согласие величин в пределах 15-25%, независимо от давлений и составов исследуемых смесй. Показано, что температурная зависимость тРпс в этих условиях подчиняется закону Аррениуса, но для богатых смесей $H_2/O_2 = 20-2$ аппроксимационное выражение имеет вид $\tau P_{IIC}(MKC.aTM) =$ - 0.16+0.04exp(6960/T), а для бедных $H_2/O_2 = 1-0.125$, $\tau P_{\Pi C}$ (мкс.атм) = 0.096+0.019exp(5720/T). Полученные закономерности позволяют заранее оценить с точностью 15-25% величину времени задержки воспламенения кислородно-водородной смеси в аналогичных условиях. Показана ограничивающая роль длины пробки ударно нагретого газа в ударной трубе на измерение времени задержки воспламенения указанных смесей при низких температурах Т<900-1000К.

SOME PARTICULARITIES OF IGNITION DELAY TIME MEASUREMENTS AND INTERPRETATION FOR HYDROGEN-OXYGEN MIXTURES BEHIND THE FRONT OF THE SHOCK WAVE.

The ignition delay time τ of H₂+O₂+ Ar mixtures was measured in the shock waves using radical OH* emission registration, in the range of temperatures T=900-3000K, pressures P=0.5-2.5atm, and compositions H₂/O₂ = 20-0.2. In these conditions practically linear dependence of τ from inverse partial stoichiometric pressure 1/P_{ps} was found independently on gas mixture composition. (Here P_{ps} is the pressure of (2H₂+O₂) in the mixture). The use of P_{ps} concept has allowed to compare the results of the present work to the data of other authors [7-11]. The temperature dependence of τ P_{ps} in these conditions is described by the Arrhenius law: for rich mixes H₂/O₂ = 20-2, τ P_{ps} (mks.atm) = -0.16+0.04exp (6960/T), for poor mixtures H₂/O₂ = 1-0.125, τ P_{ps}(mks.atm) = 0.096+0.019exp (5720/T).

The received approximations allow to calculate the ignition delay time of H_2+O_2+Ar mixtures with accuracy 15-20 % in conditions studied. The limiting role of length of the shock - heated gas in a shock tube is shown on the measurement of ignition delay time at low temperatures T < 900K.

введение.

Изучению горения водородо-кислородных смесей посвящено большое количество работ на протяжении нескольких десятков лет. Однако до сих пор механизм воспламенения, горения и детонации детально не изучен. При развитости теории этого процесса [1-3] остается много необъясненных явлений. При относительной простоте системы H₂-O₂ разветвленно-цепной

процесс воспламенения происходит с участием большого набора молекул, атомов и радикалов, как в основном, так и в возбужденном состоянии. Кинетический расчет этого процесса может включать в себя до 100 химических реакций, причем константы скоростей многих из них известны с недостаточной точностью. Поэтому при согласовании расчета и эксперимента приходится варьировать величины «ненадежных» констант, что часто приводит к совпадению результатов расчетов и эксперимента в одних условиях (температура, давление, состав и т.д.) и существенном расхождении в других.

Сведения о константах скоростей важнейших химических реакций обычно получают из опытов, подбирая условия экспериментов так, чтобы максимально выделить изучаемую реакцию (сильное разбавление буферным газом, варьирование состава газовых смесей и т. д.).

Важнейшими методами, используемыми при исследовании процесса воспламенения водородо-кислородных газовых смесей, являются методы регистрации динамики излучения электронно-возбужденного радикала OH^{*} или поглощения света радикалом OH на переходе $A^2\Sigma^+ \leftrightarrow X^2\Pi$ ($\lambda \approx 306$ нм) в ударных волнах. При этом обычно измеряется время задержки появления излучения или увеличения поглощения, характеризующее так называемое время индукции воспламенения τ . Качество модели процесса горения проверяется по наилучшей корреляции между вычисленной и измеренной величиной времени индукции в широком интервале температур, давлений, концентраций реагентов и степени разбавления буферным газом. Отсюда следует необходимость получения экспериментальных сведений о временах индукции в широком диапазоне начальных условий.

Хотя работ по измерению времени индукции воспламенения водородо-кислородных смесей довольно много, например [6-12], однако результаты экспериментов часто расходятся в 2-3 и более раз, при этом современных экспериментов с малой примесью реагирующей добавки H₂-O₂ (3-5%) в буферном газе явно недостаточно.

Целью настоящей работы являлось измерение времени индукции воспламенения водородокислородных смесей при варьировании температур, давления и компонентного состава и поиск критерия сравнения полученных значений с данными других авторов, в широком интервале указанных параметров.

В работе изучалась динамика образования электронно-возбужденного радикала ОН^{*} при воспламенении водородо-кислородных смесей, разбавленных аргоном (79-97%), в ударных волнах в диапазоне температур(T=900-3000K), давлений (P=0.5-2.5атм) и составов (H₂/O₂= 20-0.2).

Экспериментальная установка.

Эксперименты проводились на ударной трубе (УТ) с внутренним диаметром 57 мм. Установка снабжена системами откачки, приготовления и напуска газовых смесей,

Рис.1. 1- КВД, 2 – КНД, 3-система откачки, 4-смеситель, 5-пьезодатчики, 6- спектрограф, 7-фотоумножитель, 8-осциллограф, 9-компьютер.

аппаратурой для измерения скорости ударной волны, регистрации профиля давления, а также методиками эмиссионной и абсорбционной спектроскопии (рис.1).

Ударная труба состоит из камеры высокого давления (КВД) длиной 1м и камеры низкого давления (КНД) длиной 4.5м, разделенных диафрагмой. КНД наполнялась исследуемым газом, а КВД – толкающим газом. Для откачки ударной трубы использовались форвакуумный и турбомолекулярный насосы, позволяющие откачивать систему до давления 10⁻⁴Торр. Натекание в КНД вследствие недостаточной герметичности не превышало 10⁻⁴Торр/мин. Погрешность наполнения трубы исследуемым газом была не хуже 0.5%.

При разрыве диафрагмы в КНД распространялась ударная волна (УВ), сжимающая и нагревающая исследуемый газ. Рабочие газовые смеси приготавливались в герметичном смесителе из нержавеющей стали объемом 40л при давлении 1атм. В процессе приготовления газовых смесей использовался цифровой измеритель давления ИПДЦ-1, обеспечивающий точность приготовления смеси не хуже 0.1 Торр. Начальное давление исследуемой смеси в КНД во всех опытах составляло 45-90 Торр. В качестве толкающего газа использовался гелий или водород. Для более тонкого подбора параметров УВ в КВД добавлялся азот. Скорость УВ варьировалась в диапазоне 0.9–1.5 км/сек., при этом температура и давление газа во фронте УВ находились в пределах 900–3000К и 0.5-2.5 атм соответственно. Газодинамические параметры во фронте УВ рассчитывались для каждого конкретного эксперимента с использованием программы «Gaseq» по измеренной скорости ударной волны и начальным параметрам исследуемой смеси.

Для определения скорости УВ и распределения давления газа в ней использовались пьезокерамические датчики с резонансной частотой 300кгц и диаметром чувствительного элемента 1мм, установленные в стенке ударной трубы симметрично относительно сечения наблюдения по обе стороны на расстоянии 5см. Чувствительность датчиков составляла ~0.3в/атм. В сечении наблюдения располагались кварцевые окна для ввода или вывода оптического излучения и дополнительный пъезодатчик, регистрирующий изменение давления в этом сечении. Сигналы пьезодатчиков регистрировались четырехлучевыми цифровыми осциллографами TEKTRONIX TDS-3014 и AGILENT-54624A с полосой пропускания 100Мгц, имеющими связь с персональным компьютером. Погрешность измерения скорости УВ составляла ~0.5% и определялась в основном точностью измерения расстояния между чувствительными элементами пьезодатчиков.

Излучение газа за фронтом УВ в сечении наблюдения фокусировалось на входную щель дифракционного спектрографа МС-300 с фокусным расстоянием 0.3м и регистрировалось

фотоумножителем ФЭУ-100, установленным фокальной В выходной плоскости Хемилюминесценция регистрировалась спектрографа. на длине волны 306.4нм в спектральном интервале 10нм, охватывающем головную часть полосы излучения электронно-возбужденного радикала ОН^{*}. Кроме того, для определения реальной длины "пробки" ударно сжатого газа имелась возможность регистрировать временную развертку поглощения света молекулярным кислородом в полосе Шумана –Рунге при λ=220нм. Особенностью используемой УТ являлось наличие трех идентичных измерительных секций, центральные сечения которых расположены на расстояниях 2.4, 4 и 4.2м от диафрагмы. Наличие двух соседних сечений 4.0м и 4.2м позволяло измерять скорость движения излучающей зоны, что давало возможность судить о характере распространения волны горения внутри "пробки" ударно-сжатого газа. Обычно скорость ударной волны в сечении 2.4м была несколько выше, чем в сечениях 4 и 4.2м, что позволяло проводить измерения

времени индукции в различающихся условиях в одном выстреле УТ.

Рис2. 5%(О₂-2 H₂) + 95%Ar, V=1.037км/с, T=1175К, P=0.74атм

Результаты

На рис.2 представлена типичная осциллограмма сигналов излучения радикала ОН^{*} и трех пьзодатчиков давления при воспламенении смеси 5%(O₂-2 H₂)+95%Ar в ударной волне при скорости V=1.037км/с, температуре T=1175К и давлении P=0.74атм. Три верхние кривые представляют собой сигналы пьезодатчиков, а нижняя - сигнал фотоумножителя. Время задержки появления излучения OH^{*} относительно центрального датчика в данном случае составляет 154мкс.

Результаты экспериментов по измерению времени задержки воспламенения различных смесей и соответствующие параметры ударной волны представлены в таблице 1. Здесь приведены данные, полученные как в смесях $5\%(O_2-H_2)+95\%Ar$, различающихся соотношением концентраций молекул O_2 и H_2 при постоянном содержании Ar, так и результаты экспериментов, в которых содержание реагентов менялось за счет разбавителя. Времена задержки измерены как по положению фронта сигнала излучения, так и его максимуму. Это связано с тем, что некоторые авторы проводят модельные расчеты времени индукции для максимума концентрации OH^{*}, например [4]. В то же время, в экспериментах

во многих случаях слабых сигналов фотоумножителя, при малых концентрациях радикалов OH^{*} очень трудно определить максимум излучения в силу малости отношения сигнал-шум. При этом, однако, начало сигнала определяется надежно.

Следует отметить, что приведенные в таблице значения времени задержки т для разных температур, в силу специфики экспериментов на ударных трубах, различаются величиной давления (0.5-2.5атм).

Анализ результатов измерений, полученных в данной работе, показал наличие практически линейной зависимости времени индукции от обратной величины <u>парциального давления</u> <u>стехиометричекой части 1/Р_{ПС} реагирующих компонент (2H₂ - O₂) в исследованных смесях при температурах выше 1100К. Поясним используемый термин. Например, для смеси 1%O₂ + 20%H₂ + 79%Ar стехиометрическая часть (2H₂ - O₂) смеси составляет 3% и при давлении 5атм величина Р_{ПС} составит величину 0.15атм.</u>

Сравнение величин $\tau P_{\Pi C}$, вычисленных для смесей с одинаковым отношением концентраций H_2/O_2 , но с различным содержанием буферного газа и при разных давлениях, подтвердило эту зависимость.

Для проверки закономерности $\tau \sim 1/P_{\Pi C}$ было проведено сравнение результатов настоящей работы с данными [7] и [8] (таблица 2).

В цитируемых работах наблюдение велось за радикалом ОН в отраженных ударных волнах абсорбционным методом (поглощение лазерного излучения в полосе $A^2\Sigma^+$ - $X^2\Pi$, в отличие от настоящей работы, где измерялось время задержки появления электронно-возбужденного радикала OH^{*} (излучение λ =306нм) за падающей УВ. Обоснованность сравнения результатов измерения времени индукции в исследуемых смесях по появлению радикалов OH и электронно-возбужденных OH^{*} следует из анализа данных работы [9]. В этой работе измерения τ проводились как по появлению радикалов OH, так и OH^{*} (абсорбционная и эмиссионная спектроскопические методики). Различие величин τ , полученных обоими методами при одинаковых температурах и давлениях в диапазоне T=1100-1600K и P=1.7-4атм, составляет 10-30%, что находится в пределах разброса экспериментальных данных.

В таблице 2 <u>попарно</u> приведены некоторые сравнительные данные по величине $\tau P_{\Pi C}$ настоящей работы и [7,8] при T=1100-2200K и полном давлении P=0.8-64атм для смесей с одинаковым отношением концентраций кислорода к водороду, но отличающиеся полным давлением и содержанием буферного газа. Значения τ настоящей работы в таблице 2 приведены для уровня 0.5 фронта нарастания интенсивности излучения аналогично [7,8], в отличие от данных таблицы 1, измеренных либо относительно начала сигнала излучения, либо его максимума. В последней колонке приведена величина k, равная отношению значений $\tau P_{\Pi C}$ работ [7,8] к соответствующим значениям настоящей работы.

Можно отметить хорошее согласие наших результатов с данными [7]. Величина k в интервале температур 1100-2200К составила в среднем величину 1.05, при этом погрешность определяется, в основном, естественным экспериментальным разбросом данных. В [7] и в настоящей работе эксперименты проводились при давлениях газовой смеси за УВ не более 2.2атм и различии полных давлений в 2-3 раза.

В отличие от этих условий в работе [8] исследовалось воспламенение стехиометрических смесей $2H_2$ - O_2 в аргоне за отраженной УВ при давлениях до 87 атмосфер и парциальных давлениях $P_{\Pi C}$ =0.1-1атм. В таблице 2 показаны сравнительные результаты измерения величины $\tau P_{\Pi C}$ при давлениях газовой смеси 33-64атм, полученные в работе [8], и в настоящей работе при давлении ~1атм. Вследствие большого экспериментального разброса данных в [8] (до 400%) в области температур T=1200-1600K, сравнение проводилось для средних значений величин τ , полученных в нескольких экспериментах. Хорошее согласие результатов при температурах T=1460-1800K и $P_{\Pi C}$ = 0.1-0.4атм подтверждает наличие линейной зависимости времени индукции от обратной величины парциального давления в

этом диапазоне температур и полных давлений. Это свидетельствует о близком к бинарному характере процесса образования радикалов ОН и ОН* в этих условиях, что позволяет при сравнении τ , измеренных при одинаковой температуре, но различных давлениях приводить их к одному давлению, в частности к атмосферному ($\tau P_{\Pi C}$)

Важно отметить, что хотя полное давление смеси в работе [8] изменялось в пределах P=33-87атм, парциальное давление (2H₂ - O₂) оставалось в пределах $P_{\Pi C}$ =0.1-0.65атм, что свидетельствует о незначительном влиянии аргона на процесс воспламенения системы 2H₂ - O₂ - Ar в этих условиях.

Однако при T=1200К P=33 и $\tau P_{\Pi C}$ =1атм в [9] величина $\tau P_{\Pi C}$ имеет очень сильный разброс и не коррелирует с [7] и нашими данными. При этом, значения τ мало отличаются от результатов настоящей работы, хотя парциальные давления различаются в 45 раз. При T=1360К и $P_{\Pi C}$ =0,1атм зависимость от парциального давления резко усиливается и величина k в этих условиях составляет величину 3.4, при T=1470К снижается до 1.5. а при T=1580К и выше равна 1, т.е. в этой области температур снова выполняется зависимость $\tau \sim 1/P_{\Pi C}$.

Рис. 3. Температурная зависимость величины k, полученная по результатам настоящей работы и работ [7, 8], (Таб. 2).

Кривая 1- [7] полное давление P= 0.8-1.6атм, P_{ПС} - 0.01-0.07атм.

Кривая 2 -[8] в точках 1-4 Р=33атм, парциальное $P_{\Pi C}$ = 1атм, в точках 5-8,10 соответственно 64атм и 0.1атм, в 9 – 87атм и 0.65атм.

Отметим, что попытки выявить линейную зависимость τ от обратной величины полного давления или полного парциального давления по H_2 и O_2 не привела к аналогичной зависимости величины τ от 1/Р особенно при высоких давлениях смеси или при большом различии концентраций H_2 и O_2 .

На рис.3. приведена температурная зависимость величины k, вычисленная при сравнении результатов настоящей работы и [7,8] представленных в Таб.2 Кривая 1 соответствует значениям k при сравнении результатов измерениий τ в настоящей работе и в [7] в интервале парциальных давлений $P_{\Pi C}$ =0.01-0.07атм и полных давлений 0.8-1.6атм.

Кривая 2 – отражает соответствие данных [8] и настоящей работы при P_{ПС}=0.1-1атм и P=33-64атм

. Из рисунка видно, что в отличие от кривой 1, кривая 2 испытывает резкий подъем при увеличении парциального давления выше 0.1атм и температурах ниже 1600К, т.е. в этих

условиях нарушается линейная зависимость от величины 1/Р_{ПС}. Это можно объяснить, например, увеличением роли химических реакций, протекающих в тройных столкновениях, в частности, реакций рекомбинации.

Суммируя вышесказанное, по-видимому, можно сделать вывод, что линейная зависимость $\tau \sim 1/P_{\Pi C}$ выполняется во всем интервале температур T=1100-2500K и давлений P=1-87атм при парциальных давлениях $P_{\Pi C} < 0.1$ атм.

Далее было проведено сравнение результатов настоящей работы с данными [7-9] по величине тР_{ПС} для <u>произвольного</u> состава исследованных в этих работах газовых смесей H₂-O₂-Ar как по отношению концентраций H₂/O₂, так и по содержанию буферного газа при различных температурах и давлениях. В таблице 3 приведены данные настоящей работы и работ [7-9] для широкого набора составов смесей в основном с <u>избытком</u> горючего H₂/O₂ = 1-20 при содержании Ar =0-99.85 % в интервале температур 1200-2500К и давлений 0.36-64атм.

Рис. 4. Значения $\tau P_{\Pi C}$ вычисленные по результатам настоящей работы и [7-11] для смесей

- H₂-O₂-Ar произвольных составов и давлений в интервале температур 1200-2500 и давлений 0.36-87атм.
 - 1 смеси с избытком водорода $H_2/O_2 = 2-20$, $\tau P_{\Pi C}$ (мкс.атм)= -0.16+0.04 exp 6960/TK

2 – смеси с избытком кислорода H_2/O_2 = 1-0.125, $\tau P_{\Pi C}$ (мкс.атм)= 0.096+0.019exp 5720/TK

Рис.4 иллюстрирует эти результаты в координатах $\tau P_{\Pi C} - 1/T$ К (кривая 1). Из рисунка видно, что во всем интервале температур отклонение величины $\tau P_{\Pi C}$ от среднего значения составляет величину ~15-25%, что согласуется с естественным экспериментальным разбросом измеренных значений τ . Отсюда можно сделать вывод, что в этих условиях при избытке H_2 величина $\tau P_{\Pi C}$ практически не зависит от состава смеси. Температурная зависимость $\tau P_{\Pi C}$ подчиняется закону Аррениуса с энергией активации E=6960К. Апроксимационное выражение имеет вид

 $\tau P_{\Pi C}$ (мкс.атм) = -0.16+0.04ехр6960/ТК.В случае избытка кислорода ситуация несколько иная. На рис.4 также приведены значения $\tau P_{\Pi C}$ для смесей H₂-O₂-Ar с избытком кислорода O₂/H₂ = 1-8 (кривая 2) по результатам настоящей работы и [10,11] (таблица 4). Значения $\tau P_{\Pi C}$ для этих смесей лежат в 2-5 раз ниже аналогичных величин измеренных в смесях с избытком

тт

водорода. При этом температурная зависимость τP_{nc} также подчиняется закону Аррениуса, но с энергией активации E=5720K. Апроксимационное выражение в этом случае имеет вид $\tau P_{\Pi C}$ (мкс.атм)= 0.096+0.019exp 5720/TK. Разброс данных здесь в также не превышает величины ~ 10-25%. Обращает на себя внимание поведение величины $\tau P_{\Pi C}$ при низких температурах, в частности при T~1200K. Здесь указанная величина существенно зависит от отношения O_2/H_2 . Так при изменении отношения O_2/H_2 в пределах 1-8 приведенное время индукции изменяется более чем в 4 раза (рис.5) Причем с уменьшением этого отношения $\tau P_{\Pi C}$ стремится к значениям для стехиометрических и богатых смесей (кривая 1).

Рис.5. Зависимость величины т $P_{\rm HC}$ в бедных смесях $H_2\text{-}O_2\text{-}Ar$ от отношения O_2/H_2 при температуре $\sim 1200 K$ и давлениях 0.35-2атм

 $-\Omega U \perp \Omega U$

Объяснить такое поведение величины $\tau P_{\Pi C}$ в области низких температур можно обратившись к реакциям описывающим начальную стадию воспламенения водородо-кислородных смесей (зарождение и разветвление цепей).

$\Pi_2 + O_2 = O\Pi + O\Pi$	E=24160 K	(1)
$H_2 + O_2 = H + HO_2$	E=24080 K	(II)
$\mathbf{H} + \mathbf{O}_2 = \mathbf{O} + \mathbf{O}\mathbf{H}.$	E=7470 K	(III)
$O + H_2 = OH + H$	E=3500 K	(IY)
$H + O_2 + M = HO_2 + M$		(\mathbf{Y})

-24100 1/

 (\mathbf{T})

Реакции (I,II) и (III,IY) являются реакциями зарождения и разветвления цепей соответственно. Если пренебречь реакцией (I), вклад которой при низких температурах (~1000К) оспаривается многими авторами, например [12], то зарождение цепей при T~1200К

определяется в основном реакцией (II), поставляющей атомы водорода в реакцию разветвления (III). Скорость последней пропорциональна концентрации молекулярного кислорода. Реакция (III) в значительной степени определяет процесс разветвления цепи в реакции (IY). Отсюда следует уменьшение времени индукции(ускорение процесса воспламенения) при увеличении отношения O_2/H_2 . При более высоких температурах 1500-2000К зависимость т $P_{\Pi C}$ от избытка кислорода практически исчезает, что можно объяснить существенным увеличением константы скорости реакции (I) и соответственно вкладом этой реакции. Так при изменении температуры от 1000 до 2000К значение константы скорости этой реакции увеличивается на 5 порядков [10,13] При этом, при увеличении температуры также уменьшается гибель атомов водорода в реакции (Y), что также способствует ускорению процесса.

В заключение необходимо отметить ограничения по измерению времен индукции воспламенения горючих смесей в падающих ударных волнах в ударных трубах при низких температурах.

На Рис.6 приведены значения т, измеренные в настоящей работе в смеси $1\%O_2+4\%H_2+95$ Ar в интервале температур T=900-2400K и давлений и P=0.7-2.5атм. Здесь же приведены результаты измерений длины пробки ударно-нагретого газа в ударной трубе. Длина пробки измерялась как по убыли молекулярного кислорода (поглощение в полосе Шумана-Рунге $\lambda=220$ нм), так и по воспламенению кислорода в смеси $6\%O_2+94\%$ Ar при перемешивании его с водородом толкающего газа в контактной области. При этом результаты измерений обоими методами совпадают.

Рис.6. Температурная зависимость времени задержки воспламенения смеси 5%(O2-4H2)+95%Ar.

1. Экспериментальные значения т .

2. Длина пробки ударно нагретого газа.

Из рис.6 видно, что при температурах 900-1000К зона воспламенения исследуемой смеси непосредственно примыкает к контактной области, разделяющей толкающий и исследуемый газы, при этом при температуре меньше 1000К наблюдается резкое уменьшение зависимости τ от температуры. По этому, для надежных измерений τ при температурах ниже 1000К, повидимому, целесообразно использовать более длинные ударные трубы или работать в отраженных ударных волнах.

Заключение.

- 1. Экспериментально измерено время задержки τ образования радикала OH^{*} при воспламенении водородо-кислородных смесей, разбавленных аргоном (79-97%), в ударных волнах в диапазоне температур (T=900-3000K), полных давлений (P=0.5-2.5атм.), и составов (H₂/O₂= 20-0.2).
- Отмечена прямая зависимость величины τ от величины обратного парциального стехиометрического давления P_{ΠC}, близкая к линейной при T=1100-2500K и значениях P_{ΠC}=0.02-0.1атм, независимо от соотношения H₂/O₂ в смесях, сильно разбавленных аргоном (79-97%). Это указывает на характер процесса образования радикалов ОН и OH^{*} близкий к бинарному в указанных условиях и позволяет приводить экспериментальные значения т к атмосферному давлению τP_{ПC} для сравнения результатов работ разных авторов.
- 3. По результатам настоящей работы и [7-11] построена зависимость величины τP_{ΠC} от температуры для богатых и бедных смесей H₂-O₂-Ar (H₂/O₂= 20-0.125) при T=1200-2900K, полных и парциальных давлениях соответственно P=0.36-64атм и P_{ΠC}=0.02-0.1атм (рис.4). Показано, что в указанных условиях величина τP_{ΠC} зависит от температуры по закону Аррениуса и описывается выражением τP_{ΠC}(мкс.атм)= -0.16+0.04exp(6960/T) для богатых смесей (H₂/O₂= 20-2) и τP_{ΠC}(мкс.атм)= 0.096+0.019exp(5720/T) для бедных (H₂/O₂= 1-0.125). Используя эти выражения можно заранее оценить с точностью 15-25% величину времени задержки воспламенения кислородно-водородной смеси в аналогичных условиях.
- 4. При сравнении данных настоящей работы с [8] при Р=33-64атм обнаружено сильное нарушение зависимости τ~1/Р_{ПС} при температурах ниже T=1350К и парциальных давлениях Р_{ПС} в аргоне выше 0.1атм. Нарушение зависимости τ~1/Р_{ПС} возможно связано с увеличением роли реакций, проходящих в тройных столкновениях, например реакций рекомбинации.
- Показано искажающее влияние контактной поверхности в ударной трубе на определение времени индукции воспламенения горючих смесей при низких температурах (больших τ) вследствие взаимодействия зоны горения с толкающим газом. Это занижает получаемые значения τ при низких температурах (Рис.4) и налагает ограничение на измерение больших величин τ в падающих ударных волнах в ударных трубах.

Таблица 1. Данные настоящей работы по измерению времени задержки воспламенения в системе O₂+H₂+(97-79)%Ar при различном соотношении концентраций H₂ и O₂.

N⁰	P ₀	V_{yB}	ТК	P ₂	ρ/ρ_0	$\tau_{\text{-},nab}$	$ au_{cob}$	$\tau^{M}_{\pi nab}$	τ^{M}_{coo}	$P_{\Pi C}$	$\tau_{co\delta} P_{\Pi C}$
	атм	км/с		атм		мкс	мкс	мкс	мкс	атм	мкс.атм
			3%(10)	2+2H2)+9	97%Ar	$(2 H_2 + O_2)$	2)= 3%				
1	0.12	0.845	878	0.98	2.8	1000	2800			0.0294	82.32
2	0.12	0.86	903	1.02	2.84	760	2160			0.0306	66.1
3	0.12	0.87	913	1.04	2.9	808	2343	870	2523	0.0312	73
4	0.12	0.9	963	1.12	2.9	650	1885	730	2117	0.0336	63.3
5	0.06	0.96	1060	0.64	3.01	414	1246	490	1475	0.0192	23.9
6	0.06	0.98	1095	0.67	3.04	316	960	382	1160	0.0201	19.3
7	0.06	0.99	1108	0.68	3.04	290	880	328	997	0.0204	17.9
8	0.06	1.03	1183	0.74	3.1	178	552	219	680	0.0222	12.2
9	0.06	1.05	1220	0.77	3.15	142	447	182	573	0.0231	10.3
10	0.06	1.1	1313	0.84	3.2	96	307	111	355	0.0252	7.1

11	0.06	1.18	1472	0.97	3.3	57	188	111	366	0.0291	5.47
12	0.06	1.24	1596	1.1	3.38	30	101	45	152	0.033	3.33
			5%(10	2+2H2)+9	95%Ar	$(2 H_2 + C)$	(₂)=5%		•		
13	0.06	0.84	858	0.48	2.8	1080	3025	1160	3248	0.024	72.6
14	0.06	1.037	1175	0.74	3.14	154	484	196	615	0.037	17.9
15	0.06	1.037	1176	0.74	3.15	150	472	170	535	0.037	17.5
16	0.06	1.077	1247	0.8	3.19	86	274	111	354	0.04	10.96
17	0.06	1.196	1477	0.99	3.35	36	120.6	40	134	0.0495	5.97
18	0.06	1.33	1764	1.23	3.48	13.6	47	22.4	78	0.0615	2.89
19	0.06	1.39	1902	1.34	3.53	9.2	32.5	16.4	58	0.067	2.18
			8%(1 C) ₂ +1 H ₂)+	-92%Ar	$(2 H_2 + C)$	(₂)=6%				
20	0.06	0.84	845	0.48	2.82	870	2453	900	2540	0.0288	70.6
21	0.06	0.87	888	0.5	2.9	732	2117	794	2300	0.03	63.5
22	0.06	1.05	1170	0.76	3.2	80	256	96	308	0.0456	11.7
23	0.06	1.059	1192	0.77	3.21	79	254	94	301	0.0462	11.73
24	0.06	1.055	1186	0.76	3.23	74	239	92	297	0.0456	10.9
25	0.12	1.059	1193	1.54	3.23	41.2	133	48.4	156	0.0924	12.3
26	0.12	1.059	1193	1.54	3.23	42.4	137	50	161	0.0924	12.6
27	0.06	1.06	1194	0.77	3.23	70	226	90	290	0.0462	10.4
28	0.06	1.082	1234	0.8	3.26	57	186	74	241	0.048	8.9
29	0.06	1.087	1242	0.81	3.26	53	173	71	228	0.0486	8.4
30	0.06	1.096	1260	0.82	3.27	51	167	63	206	0.0492	8.2
31	0.06	1.1	1270	0.8	3.28	47	154	65	213	0.048	7.4
32	0.12	1.12	1303	1.72	3.28	23	75	29	95	0.1032	7.74
33	0.06	1.136	1333	0.9	3.33	34	113	46	153	0.054	6.1
34	0.06	1.207	1470	1.0	3.45	20	70	30	103	0.06	4.2
35	0.06	1.21	1480	1.0	3.45	18	64	29	100	0.06	3.84
36	0.06	1.214	1485	1.02	3.42	18.4	63	25	85	0.0612	3.85
3/	0.06	1.23	151/	1.04	3.44	10.8	58	21	12	0.0624	3.62
38	0.06	1.244	1540	1.07	3.48	0.4	57	22	/0	0.0642	3.00
39	0.00	1.23	1570	1.01	3.43	12.0	44	20	60	0.0000	2.07
40	0.00	1.20	1768	1.1	3.55	82	29	14	50	0.000	2.97
42	0.00	1.348	1768	1.20	3 55	9	32	12.8	45.5	0.0756	2.17
43	0.06	1.3 10	1792	1.20	3.56	66	23.5	11.2	40	0.0768	1.8
44	0.06	1.397	1878	1.35	3.59	5.4	19.4	8.8	31.6	0.081	1.57
45	0.06	1.429	1952	1.4	3.63	4.2	15.2	8.2	30	0.084	1.28
46	0.06	1.548	2243	1.665	3.7	2.5	9.3	9.7	36	0.1	0.93
47	0.06	1.56	2273	1.7	3.7	3	11	7.5	28	0.102	1.1
48	0.06	1.64	2483	1.87	3.77	1.2	4.5	5.4	20.4	0.112	0.5
			5%(10	$_{2}+1H_{2})+9$	95%Ar	$(2 H_2 + O_2)$	(2) = 3.75%	Ď			
49	0.06	1.17	1432	0.955	3.33	31	103	41	136	0.0358	3.69
50	0.06	1.185	1462	0.98	3.345	30	100	39	130	0.0367	3.05
51	0.06	1.216	1526	1.03	3.38	21.4	72	25.6	86.5	0.0386	2.8
52	0.06	1.238	1572	1.07	3.4	18.8	64	24	81.6	0.0401	2.57
53	0.06	1.31	1730	1.2	3.47	12	41	18	62	0.045	1.85
54	0.06	1.35	1820	1.28	3.51	8.2	29	13	46	0.048	1.39
	0.01	1.01	5%(50	$_{2}+1H_{2}+9$	95%Ar	$(2 H_2 + C)$	$p_{2} = 1.25\%$	6	2.5-	0.0000	
55	0.06	1.06	1225	0.79	3.22	78	251	114	367	0.0099	2.5
56	0.06	1.106	1311	0.862	3.29	53	174	65-93	107	0.0108	1.88
57	0.06	1.14	1377	0.92	3.33	42	140	56	187	0.0115	1.61
58	0.06	1.196	1488	1.01	3.39	27	91	34.6	117	0.0126	1.15
59	0.06	1.28	1664	1.16	3.48	16.8	58	26	90	0.0145	0.84
60	0.06	1.344	1809	1.28	3.54	10.6	3/	1/	60	0.0101	0.6
01 62	0.06	1.400	2100	1.55	3.03	0.0	24	11.0	42	0.0191	0.40
62	0.00	1.48	2134	1.30	3.04	3.4	12.0	12	43./	0.0195	0.44
03	0.00	1.55	2310 5%(10	/ .+/IJ_).⊥(5% Ar		(12.3)	I	l	0.0212	0.203
1	1	1	1 370(10	2. • + • • • 2./⊤>	J/0AI	(∠ 112 ⁺ U	2,1-570			1	

64	0.12	0.845	870	0.98	2.81	726	2040	738	2074	0.0294	60
65	0.12	0.85	870	0.98	2.8	816	2285	833	2332	0.0294	67
66	0.12	0.868	900	1.0	2.85	884	2520	912	2600	0.03	75
67	0.12	0.868	900	1.0	2.85	888	2530	920	2622	0.03	76
68	0.12	0.868	900	1.0	2.85	916	2610	940	2680	0.03	78
69	0.12	0.88	914	1.05	2.87	750	2150	770	2210	0.0315	68
70	0.12	0.915	968	1 14	2.95	500	1475	562	1660	0.0342	73
71	0.12	0.926	985	1.17	2.96	532	1574	570	1687	0.0351	55
72	0.12	0.920	1008	0.0	2.90	534	1507	557	1660	0.0331	13
72	0.09	0.943	1008	0.9	2.99	576	1728	586	1754	0.027	43
73	0.09	0.947	1008	1.22	3.0	510	1/20	550	1/54	0.0275	47 56 A
74	0.12	0.95	1024	1.23	3.0	420	1330	470	1030	0.0309	30.4
15	0.09	0.90	1037	0.98	3.02	420	1208	4/0	1419	0.0294	3/
/6	0.12	1.0	1100	1.36	3.08	1/0	523	207	63/	0.0408	21.3
77	0.12	1.0	1107	1.37	3.08	124	382	139	428	0.0411	15.7
78	0.12	1.0	1114	1.38	3.09	153	472	185	574	0.0414	19.5
79	0.06	1.02	1142	0.71	3.15	189	595			0.0213	12.7
						217	683	260	820		14.6
80	0.06	1.02	1142	0.71	3.15	185	586			0.0213	12.5
						212	668	277	872		14.2
81	0.12	1.06	1212	1.45	3.15	70	220	94	296	0.0435	9.7
82	0.06	1.06	1212	0.77	3.176	138	438	147	467		10.8
83	0.09	1.08	1250	1.2	3.21	83	266	141	453	0.036	9.6
84	0.06	1.11	1305	0.845	3.25	67	217	86	280	0.0243	5.3
85	0.09	1.11	1305	1.29	3.25	45	146	68	222	0.0387	5.65
86	0.06	1.11	1305	0.845	3.25	65	211	87	282	0.0253	5.3
87	0.06	1.137	1360	0.9	3.27	55	180	78	255	0.027	4.9
88	0.06	1.14	1362	0.9	3.27	55	180	64	209	0.027	4.9
89	0.12	1.141	1364	1.8	3.28	28.6	93.7			0.054	5.06
90	0.12	1.147	1375	1.8	3.28	24.4	80			0.054	4.3
						31.6	103	38	124		5.5
91	0.06	1.17	1421	0.94	3.31	45	149	51	169	0.0282	4.2
92	0.06	1.17	1421	0.94	3.31	45.2	150	65	215	0.0282	4.23
93	0.09	1.18	1440	1.43	3.33	32	106	43	143	0.0429	4.54
94	0.09	1.19	1461	1.46	3.34	25	84			0.0438	3.63
95	0.12	1.2	1481	1.98	3.35	15.6	52	24	80	0.0594	3.1
96	0.06	1.2	1491	1.0	3.35	33	110	46	154	0.03	3.3
97	0.09	1.29	1660	1.7	3.43	14.2	48.7	22.2	76	0.051	2.48
								24	83		
98	0.06	1.295	1681	1.16	3.44	14.8	51			0.0348	1.8
						19.8	68	25	86		
99	0.06	1.3	1692	1.17	3.44	16	55	29	100	0.0351	1.9
100	0.06	1.31	1714	1.2	3.45	16	55	28	97	0.036	2
101	0.09	1.34	1781	1.86	3.49	10.6	37	13.3	46.5	0.056	2.1
102	0.06	1.336	1841	1.29	3.49	10.8	37.6	20	70	0.039	1.47
103	0.06	1.42	1968	1.4	3.54	11.4	40	28	99	0.042	1.68
104	0.06	1.52	2215	16	3 61	6	22	20	72	0.048	1.06
105	0.09	1.52	2215	2.4	3 61	4	14.4		/ _	0.072	1.03
105	0.09	1.52	2213	2.1	3.63	4	14.5			0.072	1.05
100	0.05	1.5	2390	1 75	3.66	4	14.6	11	40	0.0525	0.77
107	0.06	1.0	3197	2.73	3.8	~1	~3.8	11	10	0.0323	0.77
100	0.00	1.07	5%(10	2+12 H2	<u></u> 2)+95%∆	<u>г</u> (2 Н	(-3.0) = 20	2/0	1	0.072	0.27
110	0.12	1.26	1600	2 12 112	34	29	90	36	122	0.0654	6.47
110	0.12	1.20	1692	2.10	3.4	29	70	28	07	0.0004	0. 4 / 1.87
112	0.12	1.5	2072	2.32	2.50	20 5 10	10 26	20	<i>71</i> 00	0.0090	4.0/
112	0.06	1.4/	2072	1.48	<u>3.38</u>	<u> </u>	18-30	23	90	0.0444	0.8-1.0
112	0.12	0.002	11%(10	$J_2 + 10 H$	∠ <i>)</i> +89%/ La oa	NF (2 H	$1_2 + 0_2 = 3$	70		0.0212	747
115	0.12	0.903	890	1.04	2.92	820 700	2394	702	2220	0.0312	/4./
114	0.12	0.906	902	1.00	2.94	/88	2510	/92	2328	0.0318	/3.0
115	0.12	0.936	945	1.13	3.0	640	1914	641	1917	0.0339	64.9

116	0.12	0.973	1000	1.23	3.06	484	1481	497	1521	0.0369	54.6
117	0.12	0.98	1011	1.24	3.07	470	1440			0.0372	53.6
118	0.12	1.02	1046	1.29	3.1	266	824	288	893	0.0387	32
119	0.12	1.01	1058	1.32	3.125	204	638	233	728	0.0396	25
120	0.12	1.02	1074	1.35	3.125	130	406	147	460	0.0405	16
121	0.12	1.03	1090	1.38	3.15	153	482	209	658	0.0414	20
122	0.12	1.037	1102	1.4	3.16	94	297	98	310	0.042	12.5
123	0.12	1.07	1156	1.5	3.2	131	420	140	435	0.045	19
124	0.12	1.11	1224	1.47	3.27	70	230	77	265	0.0441	10
125	0.09	1.21	1405	1.44	3.4	36.1	122	42	143	0.0432	5.25
126	0.12	1.33	1641	2.32	3.53	7.6	27	10.4	36.7	0.0696	1.87
127	0.06	1.34	1661	1.18	3.54	18.1	64			0.0354	2.26
128	0.06	1.36	1700	1.2	3.566	16	57			0.036	2.05
129	0.06	1.46	1920	1.4	3.67	9	33	14.6	53.6	0.042	1.39
130	0.06	1.57	2176	1.63	3.72	4.7	17.6	7.4	27.5	0.0485	0.85
131	0.06	1.577	2193	1.64	3.74	4.5	17	7	26	0.0492	0.84
132	0.06	1.6	2323	1.75	3.77	3.05	11.5	7.7	29	0.0525	0.6
133	0.06	1.84	2872	2.24	3.86	1.4	5.4	8	31	0.0672	0.36
134	0.06	1.88	2991	2 34	3 91	0.8	31	41	16	0.0702	0.22
134	0.00	1.00	2))1	2.54	5.71	0.0	5.1	7.1	10	0.0702	0.22
134	0.00	1.00	21%(10	D2+20 H	2)+79%A	Ar (2 I	$H_2 + O_2 = 3$	3%	10	0.0702	0.22
134	0.12	0.947	21%(10 870	D2+20 H 1.0	2)+79%A 3.02	Ar (2 I 980	$H_2 + O_2 = 3$ 2960	3%	10	0.03	89
134 135 136	0.12	0.947	21%(10 870 953	D2+20 H 1.0 1.18	2)+79%A 3.02 3.1	Ar (2 1 980	$H_2+O_2)=3$ 2960	3%		0.03 0.0354	89
134 135 136 137	0.12 0.12 0.12	0.947 1.0 1.04	21%(10 870 953 997	D2+20 H 1.0 1.18 1.28	2)+79%A 3.02 3.1 3.2	Ar (21 980 352	$H_2+O_2)=3$ 2960 1126	3%	1222	0.03 0.0354 0.0384	89 43
134 135 136 137 138	0.12 0.12 0.12 0.12 0.12	0.947 1.0 1.04 1.06	21%(10 870 953 997 1037	D2+20 H 1.0 1.18 1.28 1.32	2)+79%A 3.02 3.1 3.2 3.2	Ar (2 I 980 352 212	$\begin{array}{c} \text{J.1} \\ \text{H}_2 + \text{O}_2 \text{)} = 3 \\ \hline 2960 \\ \hline \\ 1126 \\ 678 \end{array}$	382 220	1222 700	0.03 0.0354 0.0384 0.0396	89 43 27
134 135 136 137 138 139	0.12 0.12 0.12 0.12 0.12 0.12	0.947 1.0 1.04 1.06 1.1	2331 21%(10 870 953 997 1037 1077	2.34 D2+20 H 1.0 1.18 1.28 1.32 1.42	2)+79%A 3.02 3.1 3.2 3.2 3.3	0.3 Ar (2 I 980 352 212 170	$\begin{array}{c} 3.1\\ H_2+O_2)=3\\ \hline 2960\\ \hline \\1126\\ \hline 678\\ \hline 560\\ \end{array}$	3% 382 220 186	1222 700 614	0.03 0.0354 0.0384 0.0396 0.0426	89 43 27 24
134 135 136 137 138 139 140	0.12 0.12 0.12 0.12 0.12 0.12 0.12	0.947 1.0 1.04 1.06 1.1 1.12	21%(10 870 953 997 1037 1077 1123	2:34 D2+20 H 1.0 1.18 1.28 1.32 1.42 1.47	3.02 3.1 3.2 3.2 3.3 3.3	0.3 Ar (2 I 980 352 212 170 88	$\begin{array}{c} 3.1\\ H_2+O_2)=2\\ 2960\\ \hline \\ 1126\\ 678\\ 560\\ 290\\ \end{array}$	3% 382 220 186 109	1222 700 614 360	0.03 0.0354 0.0384 0.0396 0.0426 0.0441	89 43 27 24 12.8
134 135 136 137 138 139 140 141	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	0.947 1.0 1.04 1.06 1.1 1.12 1.337	2))1 21%(10 870 953 997 1037 1077 1123 1470	2:34 D2+20 H 1.0 1.18 1.28 1.32 1.42 1.42 1.47 1.06	3.91 2)+79%A 3.02 3.1 3.2 3.2 3.3 3.3 3.3 3.62	0.3 Ar (2 I 980 352 212 170 88 35.4	$\begin{array}{c} 3.1\\ H_2+O_2)=3\\ \hline 2960\\ \hline \\ 1126\\ 678\\ 560\\ \hline 290\\ 128\\ \end{array}$	3% 382 220 186 109	1222 700 614 360	0.03 0.0354 0.0384 0.0396 0.0426 0.0441 0.0318	89 43 27 24 12.8 4.1
134 135 136 137 138 139 140 141 142	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	$\begin{array}{c} 0.947\\ 1.0\\ 1.04\\ 1.06\\ 1.1\\ 1.12\\ 1.337\\ 1.36\\ \end{array}$	2)91 21%(10 870 953 997 1037 1077 1123 1470 1510	2:34 D2+20 H 1.0 1.18 1.28 1.32 1.42 1.47 1.06 2.2	3.91 2)+79%A 3.02 3.1 3.2 3.2 3.3 3.3 3.3 3.62 3.6	0.3 Ar (2 I 980 352 212 170 88 35.4 15.6 15.6	$\begin{array}{c} 3.1\\ H_2+O_2)=3\\ \hline 2960\\ \hline \\1126\\ 678\\ 560\\ \hline 290\\ 128\\ 56\\ \end{array}$	3% 382 220 186 109 19	1222 700 614 360 68	0.03 0.0354 0.0354 0.0384 0.0396 0.0426 0.0441 0.0318 0.066	89 43 27 24 12.8 4.1 3.7
134 135 136 137 138 139 140 141 142 143	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	$\begin{array}{c} 0.947\\ \hline 1.0\\ \hline 1.04\\ \hline 1.06\\ \hline 1.1\\ \hline 1.12\\ \hline 1.337\\ \hline 1.36\\ \hline 1.35\\ \end{array}$	21%(10 870 953 997 1037 1077 1123 1470 1510 1547	2:34 D2+20 H 1.0 1.18 1.28 1.32 1.42 1.47 1.06 2.2 2.27	3.91 2)+79%A 3.02 3.1 3.2 3.2 3.3 3.3 3.3 3.62 3.6 3.68	3.5 352 212 170 88 35.4 15.6 12.2	$\begin{array}{c} 3.1\\ H_2+O_2)=3\\ \hline 2960\\ \hline \\ 1126\\ 678\\ 560\\ \hline 290\\ 128\\ 56\\ 45\\ \end{array}$	3% 382 220 186 109 19 18	1222 700 614 360 68 68 66	0.03 0.0354 0.0354 0.0396 0.0426 0.0441 0.0318 0.066 0.0681	89 43 27 24 12.8 4.1 3.7 3.06
134 135 136 137 138 139 140 141 142 143	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.06 0.12 0.12 0.12	$\begin{array}{c} 0.947\\ \hline 1.0\\ \hline 1.04\\ \hline 1.06\\ \hline 1.1\\ \hline 1.12\\ \hline 1.337\\ \hline 1.36\\ \hline 1.35\\ \hline 1.515\\ \end{array}$	21%(10 870 953 997 1037 1077 1123 1470 1510 1547 1805	2.34 D2+20 H 1.0 1.18 1.28 1.32 1.42 1.47 1.06 2.2 2.27 1.37	3.91 2)+79%A 3.02 3.1 3.2 3.2 3.3 3.3 3.3 3.62 3.6 3.68 3.8	0.3 Ar (2 I 980 352 212 170 88 35.4 15.6 12.2 8.2	$\begin{array}{c} 3.1\\ H_2+O_2)=3\\ \hline 2960\\ \hline \\ 1126\\ 678\\ 560\\ \hline 290\\ 128\\ 56\\ 45\\ 31\\ \end{array}$	3% 382 220 186 109 19 18	1222 700 614 360 68 66	0.03 0.0354 0.0384 0.0396 0.0426 0.0441 0.0318 0.066 0.0681 0.0411	89 43 27 24 12.8 4.1 3.7 3.06 1.27
134 135 136 137 138 139 140 141 142 143 144 145	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.06 0.12 0.06 0.12	$\begin{array}{c} 0.947\\ \hline 1.0\\ \hline 1.04\\ \hline 1.06\\ \hline 1.1\\ \hline 1.12\\ \hline 1.337\\ \hline 1.36\\ \hline 1.35\\ \hline 1.515\\ \hline 1.58\\ \end{array}$	21%(10 870 953 997 1037 1077 1123 1470 1510 1547 1805 1936	2:34 D2+20 H 1.0 1.18 1.28 1.32 1.42 1.47 1.06 2.2 2.27 1.37 1.5	3.91 2)+79%A 3.02 3.1 3.2 3.2 3.3 3.3 3.3 3.6 3.6 3.68 3.8 3.8 3.86	0.3 Ar (2 I 980 352 212 170 88 35.4 15.6 12.2 8.2 4	$\begin{array}{c} 3.1\\ H_2+O_2)=3\\ \hline 2960\\ \hline \\ 11126\\ 678\\ 560\\ 290\\ 128\\ 56\\ 45\\ 31\\ 15.45\\ \end{array}$	3% 382 220 186 109 19 18	1222 700 614 360 68 66	0.03 0.0354 0.0384 0.0396 0.0426 0.0441 0.0318 0.066 0.0681 0.0411 0.045	89 43 27 24 12.8 4.1 3.7 3.06 1.27 0.7
134 135 136 137 138 139 140 141 142 143 144 145 146	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.06 0.12 0.06 0.06 0.06 0.06	$\begin{array}{c} 0.947\\ 1.0\\ 1.04\\ 1.06\\ 1.1\\ 1.12\\ 1.337\\ 1.36\\ 1.35\\ 1.515\\ 1.58\\ 1.59\\ \end{array}$	21%(10 870 953 997 1037 1077 1123 1470 1510 1547 1805 1936 1978	2:34 D2+20 H 1.0 1.18 1.28 1.32 1.42 1.47 1.06 2.2 2.27 1.37 1.5 1.5	3.91 2)+79%A 3.02 3.1 3.2 3.2 3.3 3.3 3.3 3.6 3.6 3.6 3.68 3.8 3.8 3.86 3.87	0.3 Ar (2 I 980 352 212 170 88 35.4 15.6 12.2 8.2 4 5	$\begin{array}{c} 3.1\\ H_2+O_2)=3\\ \hline 2960\\ \hline \\ 1126\\ 678\\ 560\\ 290\\ 128\\ 56\\ 45\\ 31\\ 15.45\\ 19.35\\ \end{array}$	3% 382 220 186 109 19 18	1222 700 614 360 68 66	0.03 0.0354 0.0354 0.0396 0.0426 0.0441 0.0318 0.066 0.0411 0.045	0.22 89 43 27 24 12.8 4.1 3.7 3.06 1.27 0.7 0.87
$ \begin{array}{r} 134 \\ 135 \\ 136 \\ 137 \\ 138 \\ 139 \\ 140 \\ 141 \\ 142 \\ 143 \\ 144 \\ 145 \\ 146 \\ 147 \\ \end{array} $	$\begin{array}{c} 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.06\\ 0.12\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ \end{array}$	$\begin{array}{c} 0.947\\ \hline 1.0\\ \hline 1.04\\ \hline 1.06\\ \hline 1.1\\ \hline 1.12\\ \hline 1.337\\ \hline 1.36\\ \hline 1.35\\ \hline 1.515\\ \hline 1.58\\ \hline 1.59\\ \hline 1.634\\ \end{array}$	2)91 21%(10 870 953 997 1037 1077 1123 1470 1510 1547 1805 1936 1978 2050	$\begin{array}{c} 2.54\\ \hline 2.2+20 \text{ H}\\ \hline 1.0\\ \hline 1.18\\ \hline 1.28\\ \hline 1.32\\ \hline 1.42\\ \hline 1.42\\ \hline 1.47\\ \hline 1.06\\ \hline 2.2\\ \hline 2.27\\ \hline 1.37\\ \hline 1.5\\ \hline 1.5\\ \hline 1.6\\ \end{array}$	3.91 2)+79%A 3.02 3.1 3.2 3.3 3.62 3.6 3.68 3.86 3.87 3.9	0.3 Ar (2 I 980 352 212 170 88 35.4 15.6 12.2 8.2 4 5 4.8	$\begin{array}{c} 3.1\\ 1_2+O_2)=3\\ \hline 2960\\ \hline \\ 1126\\ 678\\ 560\\ 290\\ 128\\ 56\\ 45\\ 31\\ 15.45\\ 19.35\\ 18.7\\ \end{array}$	382 220 186 109 19 18	1222 700 614 360 68 66	0.03 0.0354 0.0354 0.0396 0.0426 0.0441 0.0318 0.066 0.0681 0.0411 0.045 0.045	89 43 27 24 12.8 4.1 3.7 3.06 1.27 0.7 0.87 0.9
$\begin{array}{c} 134\\ \hline \\ 135\\ 136\\ \hline \\ 137\\ \hline \\ 138\\ 139\\ \hline \\ 140\\ \hline \\ 141\\ \hline \\ 142\\ \hline \\ 143\\ \hline \\ 144\\ \hline \\ 145\\ \hline \\ 146\\ \hline \\ 147\\ \hline \\ 148 \end{array}$	$\begin{array}{c} 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.06\\ 0.12\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ \end{array}$	$\begin{array}{c} 0.947\\ \hline 1.0\\ \hline 1.04\\ \hline 1.06\\ \hline 1.1\\ \hline 1.12\\ \hline 1.337\\ \hline 1.36\\ \hline 1.35\\ \hline 1.515\\ \hline 1.515\\ \hline 1.58\\ \hline 1.59\\ \hline 1.634\\ \hline 1.77\\ \end{array}$	21%(10 870 953 997 1037 1077 1123 1470 1510 1547 1805 1936 1978 2050 2350	$\begin{array}{c} 2.54\\ \hline 2.2+20\ \text{H}\\ \hline 1.0\\ \hline 1.18\\ \hline 1.28\\ \hline 1.32\\ \hline 1.42\\ \hline 1.42\\ \hline 1.47\\ \hline 1.06\\ \hline 2.2\\ \hline 2.27\\ \hline 1.37\\ \hline 1.5\\ \hline 1.5\\ \hline 1.6\\ \hline 1.88\\ \end{array}$	2)+79%A 3.02 3.1 3.2 3.3 3.3 3.3 3.3 3.62 3.6 3.68 3.86 3.86 3.87 3.9 4.0	$\begin{array}{c} 0.3 \\ \text{Ar} & (2 \ 1 \\ 980 \\ \hline \\ 352 \\ 212 \\ 170 \\ 88 \\ 35.4 \\ 15.6 \\ 12.2 \\ 8.2 \\ 4 \\ 5 \\ 4.8 \\ \sim 1.9 \\ \end{array}$	$\begin{array}{c} 3.1\\ 1_2+O_2)=3\\ \hline 2960\\ \hline \\ 1126\\ 678\\ 560\\ 290\\ 128\\ 56\\ 45\\ 31\\ 15.45\\ 19.35\\ 18.7\\ 7.3\\ \end{array}$	382 220 186 109 19 18	1222 700 614 360 68 66	0.03 0.0354 0.0354 0.0384 0.0396 0.0426 0.0441 0.0318 0.066 0.0681 0.045 0.045 0.045 0.045	89 43 27 24 12.8 4.1 3.7 3.06 1.27 0.7 0.87 0.9 0.41
$\begin{array}{c} 134\\ \hline \\ 135\\ 136\\ \hline \\ 137\\ \hline \\ 138\\ 139\\ \hline \\ 140\\ \hline \\ 141\\ \hline \\ 142\\ \hline \\ 143\\ \hline \\ 144\\ \hline \\ 145\\ \hline \\ 146\\ \hline \\ 147\\ \hline \\ 148\\ \hline \\ 149\\ \hline \end{array}$	$\begin{array}{c} 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.06\\ 0.12\\ 0.12\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ \end{array}$	$\begin{array}{c} 0.947\\ \hline 0.947\\ \hline 1.0\\ \hline 1.04\\ \hline 1.06\\ \hline 1.1\\ \hline 1.12\\ \hline 1.337\\ \hline 1.36\\ \hline 1.35\\ \hline 1.515\\ \hline 1.58\\ \hline 1.59\\ \hline 1.634\\ \hline 1.77\\ \hline 1.78\\ \end{array}$	21%(10 870 953 997 1037 1077 1123 1470 1510 1547 1805 1936 1978 2050 2350 2387	$\begin{array}{c} 2.54\\ \hline 2.2+20\ \text{H}\\ \hline 1.0\\ \hline 1.18\\ \hline 1.28\\ \hline 1.32\\ \hline 1.42\\ \hline 1.42\\ \hline 1.47\\ \hline 1.06\\ \hline 2.2\\ \hline 2.27\\ \hline 1.37\\ \hline 1.5\\ \hline 1.5\\ \hline 1.5\\ \hline 1.6\\ \hline 1.88\\ \hline 1.9\\ \end{array}$	2)+79%A 3.02 3.1 3.2 3.2 3.3 3.3 3.3 3.3 3.62 3.6 3.68 3.86 3.86 3.87 3.9 4.0 4	$\begin{array}{r} 0.3 \\ \hline 0.3 \\ \hline$	$\begin{array}{c} 3.1\\ 1_2+O_2)=3\\ \hline 2960\\ \hline \\ 1126\\ 678\\ 560\\ 290\\ 128\\ 56\\ 45\\ 31\\ 15.45\\ 19.35\\ 18.7\\ \hline 7.3\\ 8.8\\ \end{array}$	382 220 186 109 19 18	1222 700 614 360 68 66	0.03 0.0354 0.0354 0.0384 0.0396 0.0426 0.0441 0.0318 0.066 0.0681 0.045 0.045 0.045 0.045 0.0564 0.057	89 43 27 24 12.8 4.1 3.7 3.06 1.27 0.7 0.87 0.9 0.41 0.5
$\begin{array}{c} 134\\ \hline \\ 135\\ \hline \\ 136\\ \hline \\ 137\\ \hline \\ 138\\ \hline \\ 139\\ \hline \\ 140\\ \hline \\ 141\\ \hline \\ 142\\ \hline \\ 143\\ \hline \\ 144\\ \hline \\ 145\\ \hline \\ 144\\ \hline \\ 145\\ \hline \\ 146\\ \hline \\ 147\\ \hline \\ 148\\ \hline \\ 149\\ \hline \\ 150\\ \end{array}$	$\begin{array}{c} 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.06\\ 0.12\\ 0.12\\ 0.06\\$	$\begin{array}{c} 0.947\\ \hline 0.947\\ \hline 1.0\\ \hline 1.04\\ \hline 1.06\\ \hline 1.1\\ \hline 1.12\\ \hline 1.337\\ \hline 1.36\\ \hline 1.35\\ \hline 1.515\\ \hline 1.58\\ \hline 1.59\\ \hline 1.634\\ \hline 1.77\\ \hline 1.78\\ \hline 1.79\\ \hline \end{array}$	21%(10 870 953 997 1037 1077 1123 1470 1510 1547 1805 1936 1978 2050 2350 2387 2397	$\begin{array}{c} 2.34\\ \hline 2.2+20 \text{ H}\\ \hline 1.0\\ \hline 1.18\\ \hline 1.28\\ \hline 1.32\\ \hline 1.42\\ \hline 1.42\\ \hline 1.47\\ \hline 1.06\\ \hline 2.2\\ \hline 2.27\\ \hline 1.37\\ \hline 1.5\\ \hline 1.5\\ \hline 1.5\\ \hline 1.6\\ \hline 1.88\\ \hline 1.9\\ \hline 1.93\\ \hline \end{array}$	3.91 2)+79%A 3.02 3.1 3.2 3.3 3.3 3.62 3.63 3.64 3.65 3.66 3.68 3.86 3.87 3.9 4.0 4 4.02	$\begin{array}{c} 0.8 \\ \hline 0.8 \\ \hline$	$\begin{array}{c} 3.1\\ 1_2+O_2)=3\\ \hline 2960\\ \hline \\ 1126\\ 678\\ 560\\ 290\\ 128\\ 56\\ 45\\ 31\\ 15.45\\ 19.35\\ 18.7\\ 7.3\\ 8.8\\ 7.2\\ \end{array}$	382 220 186 109 19 18	1222 700 614 360 68 66	0.03 0.0354 0.0354 0.0384 0.0396 0.0426 0.0441 0.0318 0.066 0.0681 0.045 0.045 0.045 0.045 0.057 0.0579	89 43 27 24 12.8 4.1 3.7 3.06 1.27 0.7 0.87 0.9 0.41 0.5 0.42
$\begin{array}{c} 134\\ \hline \\ 135\\ \hline \\ 136\\ \hline \\ 137\\ \hline \\ 138\\ \hline \\ 139\\ \hline \\ 140\\ \hline \\ 141\\ \hline \\ 142\\ \hline \\ 143\\ \hline \\ 144\\ \hline \\ 144\\ \hline \\ 145\\ \hline \\ 146\\ \hline \\ 147\\ \hline \\ 148\\ \hline \\ 149\\ \hline \\ 150\\ \hline \\ 151\\ \end{array}$	$\begin{array}{c} 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.06\\ 0.12\\ 0.12\\ 0.06\\$	$\begin{array}{c} 0.947\\ \hline 0.947\\ \hline 1.0\\ \hline 1.04\\ \hline 1.06\\ \hline 1.1\\ \hline 1.12\\ \hline 1.337\\ \hline 1.36\\ \hline 1.35\\ \hline 1.515\\ \hline 1.58\\ \hline 1.59\\ \hline 1.634\\ \hline 1.77\\ \hline 1.78\\ \hline 1.79\\ \hline 1.82\\ \end{array}$	21%(10 870 953 997 1037 1077 1123 1470 1510 1547 1805 1936 1978 2050 2350 2387 2397 2466	$\begin{array}{c} 2.34\\ \hline 2.2+20 \text{ H}\\ \hline 1.0\\ \hline 1.18\\ \hline 1.28\\ \hline 1.32\\ \hline 1.42\\ \hline 1.42\\ \hline 1.47\\ \hline 1.06\\ \hline 2.2\\ \hline 2.27\\ \hline 1.37\\ \hline 1.5\\ \hline 1.5\\ \hline 1.5\\ \hline 1.6\\ \hline 1.88\\ \hline 1.9\\ \hline 1.93\\ \hline 2.0\\ \end{array}$	3.91 2)+79%A 3.02 3.1 3.2 3.3 3.62 3.6 3.68 3.86 3.86 3.87 3.9 4.0 4.02 4.04	$\begin{array}{r} 0.3 \\ \text{Ar} & (2 \ \text{I} \\ 980 \\ \hline \\ 352 \\ 212 \\ 170 \\ 88 \\ 35.4 \\ 15.6 \\ 12.2 \\ 8.2 \\ 4 \\ 5 \\ 4.8 \\ \sim 1.9 \\ 2.2 \\ 1.8 \\ 2.5 \\ \end{array}$	$\begin{array}{c} 3.1\\ 1.2+O_2)=3\\ \hline 2960\\ \hline \\ 1126\\ 678\\ 560\\ 290\\ 128\\ 56\\ 45\\ 31\\ 15.45\\ 19.35\\ 18.7\\ 7.3\\ 8.8\\ 7.2\\ 10\\ \end{array}$	382 220 186 109 18	1222 700 614 360 68 66	0.03 0.0354 0.0354 0.0396 0.0426 0.0441 0.0318 0.066 0.0411 0.045 0.045 0.045 0.045 0.0564 0.0579 0.06	0.22 89 43 27 24 12.8 4.1 3.7 3.06 1.27 0.7 0.87 0.9 0.41 0.5 0.42 0.6

Таблица 2. Сравнение результатов настоящей работы по величине τР_{ПС} с данными работ [7,8] <u>при одинаковых соотношениях</u> H₂/O₂. Т, Р-температура и давление в падающей или отраженной ударной волне, Р_{ПС} – парциальное давление стехиометрической части реагирующих компонет в ударной волне, τ - время задержки воспламенения. k – отношение величины τР_{ПС} вычисленной по данным работ [7,8] к соответствующей величине из настоящей работы.

		Настоя	ящая ра	бота					Pa	бота	[7]				
СМЕСЬ	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Р _{ПС} атм	т мкс	τР _{ПС} мкс.атм	СМЕСЬ	Ar %	ТК	Р атм	Р _{ПС} атм	τ мкс	τР _{ПС} мкс.атм	τР _{ПС} средн	k
$4 H_2 + O_2$	95	1100	1.36	0.04	523	21.44	4H ₂ +O ₂	95	1102	0.96	0.029	836	24		1.12
	97	1250	1.2	0.03	283	10.2		95	1248	0.75 6	0.0113	943	10.7		1.05
	97	1421	0.94	0.02 8	177	5		95	1472	0.86	0.013	384	4.95		0.99
	97	1714	1.2	0.03 6	70	2.52		95	1747	0.8	0.012	204	2.45		0.97
	97	2215	1.6	0.04 8	22	1.056		95	2136	0.85	0.0127	90	1.147		1.09
$20 H_2 + O_2$	79	1510	2.2	0.06	56	3.7	20 H ₂ + O ₂	89.5	1514	0.73	0.011	288	3.15		0.85
		2050	1.6	0.04 8	18.7	0.9			2042	0.83 6	0.0125	74	1.03		1.03
		2466	2.0	0.06	10	0.6			2481	0.9	0.0135	36	0.49		0.8
									Работа	ι [8]					
2H ₂ +O ₂	97	1183	0.74	0.02 2	552	12	2H ₂ +O ₂	97	1189	33	1	393	393		33
								97	1206	33	1	89	89		
								97	1206	33	1	203	203		
	97	1220	0.77	0.02	447	10.3		97	1221	33	1	133	133		13
	97	1360	0.9	0.027	180	4.9		99.85	1361	64	0.096	145	14	16.7	3.4
	97	1362	0.9	0.027	180	4.9		99.85	1366	64	0.096	202	19.4		

97	1472	0.97	0.029	188	5.47	99.85	1462	64	0.096	94	9	7	1.28
						99.85	1481	64	0.096	53	5.1		
						99.85	1585	64	0.096	38	3.65		
97	1596	1.1	0.03	101	3.33	99.85	1585	64	0.096	40	3.84	3.42	1.03
						99.85	1616	64	0.096	29	2.78		
						99.25	1757	57	0.43	5	2.15		
95	1764	1.23	0.06 15	47	2.9	99.25	1748	57	0.43	7	3	2.86	0.99
						99.25	1779	57	0.43	8	3.44		

Таблица 3. Сравнение результатов настоящей работы с данными [7,8,9] по величине тР_{ПС} в <u>богатых смесях</u> H₂-O₂-Ar (H₂/O₂=1-20) в интервале температур 1200-2500 и полных давлений 0.36-64атм при произвольных составах и давлениях.

Т, Р - температура(К), полное давление смеси(атм) в падающей или отраженной ударной волне, Р_{ПС} – парциальное давление стехиометрической части реагирующих компонет в ударной волне, т - время задержки воспламенения.

		ТК	Р	τ	$\tau P_{\Pi C}$	ТК	Р	τ	$\tau P_{\Pi C}$	ТК	Р	τ	$\tau P_{\Pi C}$	ТК	Р	τ	$\tau P_{\Pi C}$
СМЕСЬ	Ar %		атм	мкс	мкс.атм		атм	мкс	мкс.атм		атм	мкс	мкс.атм		атм	мкс	мкс.атм
Настоящая																	
работа																	
$2H_2+O_2$	97	1183	0.74	552	12.2	1472	0.97	188	5.47			_	_			_	_
		1220	0.77	447	10.3	1596		101	3.33								_
$2H_2+O_2$	95	1247	0.8	274	11	1477	0.99	121	5.97	1902	1.34	32.5	2.18	_	_	_	_
		1175	0.74	484	17.9												
		1176	0.74	472	17.5												
H_2+O_2	92	1193	1.54	133	12.3	1579	1.1	45	2.97	1878	1.35	19.4	1.57	_	_	_	_
		1193	1.54	137	12.6	1560	1.0	44	2.67	1952	1.4	15.2	1.27				
		1234	0.8	186	9												
H_2+O_2	95			_	_	1526	1.03	72	2.8			_	_			_	
						1572	1.07	64	2.57								
$4H_2+O_2$	95	1212	1.45	220	9.7	1660	1.7	48.7	2.48	1968	1.4	40	1.68	2390	1.75	14.6	0.77
		1212	0.77	438	10.8					1841	1.29	37.6	1.47				

		1250	1.2	266	9.6												
$10H_2 + O_2$	89	1224	1.47	230	10	1405	1.44	122	5.25	1920	1.4	33	1.39	2323	1.75	11.5	0.6
						1641	2.32	27	1.9					2872	2.24	5.4	0.36
						1661	1.18	64	2.26								
20H ₂ +O ₂	79	1123	1.47	290	12.8	1510	2.2	56	3.7	1978	1.5	19.35	0.87	2397	1.93	8.8	0.42
						1547	2.27	45	3.06	2050	1.6	18.7	0.9	2466	2.0	10	0.6
$4H_2+O_2$	97.5	1228	0.73	1153	12	1596	0.85	269	3.4	1998	1.0	99	1.5				
										2017		128	1.46		_		_
$4H_2+O_2$	99.5	_	_	_	_	1525	2	703	4.2	1934	1.9	293	1.67	2409	2.1	127	0.8
						1639	2.05	550	3.3	2044	2.15	199	1.28				
10H ₂ +O ₂	98.9					1583	3.5	246	2.6	1945	3.1	126	1.17	2379	3.3	56	0.55
					_	1609	3.4	241	2.45	1976	3.28	111	1.1	2413	3.38	49	0.4
						1611	3.7	224	2.5	2057	3.3	93	0.93				
20H ₂ +O ₂	89.5					1579	0.72	226	2.3	2042	0.84	74	0.93	2407	0.9	39	0.5
					_	1616	0.8	193	2.3					2481	0.9	36	0.49
														2494	0.85	37	0.47
$10H_2 + O_2$	94.5	_	_	_	_	1565	0.8	235	2.8	1939	0.73	118	1.3	2414	0.72	57	0.6
						1620	0.76	220	2.5	2014	0.72	105	1.13				
Работа [8]																	
$2H_2+O_2$	99.85					1585	64	39	3.65	1876	64	21	2				
2112+02	JJ.05	—	—	—	—	1616	64	29	2.78	1070	01	21	2	—	—	—	-
$2H_2+O_2$	99.25	-	-		-	-	-	-	-	1930	57	4	1.7	-	-	-	-
Работа [9]																	
$2H_2+O_2$	70	1242	0.36	116	12.5	1510	0.49	33	4.8	-	-	-	-	-	-	-	-
		1243	0.72	52	11.2	1583	0.53	28	4.4								
$2H_2+O_2$	0	1245	1.85	5	9.3	-	-	-	-	-	-	-	-	-	-	-	-
$2H_2+O_2$	94	1251	1.4	181	15.2	1622	2.1	28	3.6	-	-	-	-	-	-	-	-
		1251	1.4	126	10.6	1615	2.1	36	4.5	-	-	-	-	-	-	-	-
						1627	2.1	20	2.52	-	-	-	-	-	-	-	-
						1601	2.1	26	3.27	-	-	-	-	-	-	-	-

Таблица 4. Сравнение результатов настоящей работы с данными [10-11] по величине τР_{ПС} в <u>бедных смесях</u> H₂-O₂-Ar (H₂/O₂=1-0.125) в интервале температур 1200-2300 и полных давлений 0.35-2атм <u>при произвольных составах и давлениях</u>. Т, Р - температура(К), полное давление смеси(атм) в падающей или отраженной ударной волне, Р_{ПС} – парциальное давление стехиометрической части реагирующих компонет в ударной волне, τ - время задержки воспламенения.

		ТК	Р	τ	$\tau P_{\Pi C}$	ТК	Р	τ	$\tau P_{\Pi C}$	ТК	Р атм	τ	$\tau P_{\Pi C}$	ТК	Р	τ	$\tau P_{\Pi C}$
СМЕСЬ	Ar %		атм	мкс	мкс.атм		атм	мкс	мкс.атм			мкс	мкс.атм		атм	мкс	мкс.атм
Настоящая																	
работа																	
H_2+O_2	92	1234	0.8	186	9	1579	1.1	45	2.97	1878	1.35	19.4	1.57				
						1560	1.0	44	2.67	1952	1.4	15.2	1.27				
$H_2 + 5O_2$	95	1225	0.79	251	2.4	1664	1.16	58	0.78	1809	1.28	37	0.6	2316	1.7	12.5	0.265
										2100	1.53	24	0.46				
Работа[10]																	
$H_2 + 4O_2$	95	1241	0.35	390	2.05	1655	0.5	93	0.7	1802	0.28	112	0.47				
	95					1655	0.5	86	0.64								
$H_2 + 8O_2$	91	1230	0.72	168	1.8												
Работа[11]																	
$H_2 + 4O_2$	75					1588	0.54	22	0.89	1847	0.23	38	0.65				
	95									1834	1.4	18	0.38				
$H_2 + 2O_2$	97	1200	2	150	4.5	1616	1.44	38	0.82	1836	0.84	43	0.54				
		1175	0.88	355	4.6	1626	1.45	45	0.98	1826	0.83	48	0.6				

Литература

- 1. Семенов Н.Н. О некоторых проблемах химической кинетики и реакционной способности. М.: Изд-во АН СССР.1958. 686 с.
- 2. Кондратьев В.Н., Никитин Е.Е.. Кинетика и механизм газофазных реакций. М.: Наука, 1974.
- 3. Шотт Г.и Гетзингер Р.. Исследование реакции водорода с кислородом в ударных трубах.-В сб.: Физическая химия быстрых реакций. М.: Мир, 1976.
- 4. Смехов Г.Д., Ибрагимова Л.Б., Каркач С.П., Скребков О.В., Шаталов О.П. Численное моделирование воспламенения водородо-кислордной смеси с учетом электронновозбужденных компонентов // Теплофизика высоких температур. 2007. Т. 45. № 3. С. 1-13.
- 5. Попов Н.А., Влияние неравновесного возбуждения на воспламенение водородокислородных смесей// Теплофизика высоких температур. 2007. Т. 45. № 2. С. 296-315.
- Скребков О.В., Каркач С.П. Колебательная неравновесность и электронное возбуждение в реакции водорода с кислородом за ударной волной// Кинетика и катализ. 2007. Т. 48. № 3. С.1-10.
- Ryu S., Hwang S. Shock Tube and Modeling Study of the H+O₂ =OH+O Reaction over a Wide Range of Composition, Pressure and Temperature // J.Phys.Chem. 1995. V. 99. №38. P.13984-13991.
- Petersen E.L., Davidson D.F., Rohrig M., Hanson R.K., High-Pressure Shock-Tube Measurements of Ignition Times in Stoichiometric H₂-O₂-Ar Mixtures // Proceeding of the 20th Inernational Symposium on Shock Waves Pasadena. 1995. P.941-946.
- 9. Cohen A., Larsen J. Explosive mechanism of the H₂-O₂ reaction near the second ignition limit // Report BRL. 1967. No 1386.
- 10. Jachimowski C.J, Houghton W.M. Shock-tube study of the initiation process in the hydrogenoxigen reaction. Combustion and Flame. 1971. V.17. P.25-30.
- 11. Schott G.L, Kinsey J.L, Kinetic study of hydroxyl radical in shock waves 11: Induction time in the hydrogen-oxigen reaction. J Chem Phys.1958. V.29. P.1177-1182.
- 12. A.A. Konnov. Refinement of the kinetic mechanismof hydrogen combustion.// Химическая физика. 2004. T.23. № 8. C. 5-18.
- 13. Ripley D.L, Gardiner W.C.Jr. Shock tube study of the hydrogen-oxygen reaction. II. Role of exchange initiation // J. Chem. Phys. V.44. P.2285-2296.

Работа поддержана грантом РФФИ № 07-01-00281.

В заключение автор выражает благодарность О.В. Скребкову за инициирование работы, О.П. Шаталову за руководство и помощь в работе, П.В. Козлову за полезные консультации.

Статья поступила в редакцию 22 декабря 2008 г.