РЕШЕНИЕ ДВУМЕРНОГО УРАВНЕНИЯ ПУАССОНА НЕЛИНЕЙНЫМ ИТЕРАЦИОННЫМ МЕТОДОМ

Д.А. Андриенко^{1,2}, С.Т. Суржиков¹.

¹ Институт проблем механики Российской академии наук, Москва ² Московский Физико-Технический институт, г. Долгопрудный

Аннотация

Решается двумерное уравнение Пуассона с граничными условиями обобщенного вида при помощи нелинейного α – β итерационного алгоритма, разработанного Б.Н. Четверушкиным. Выполнено сравнение производительности алгоритма Четверушкина и метода правой прогонки. К обоим методам применялся релаксационный алгоритм итераций с целью улучшения сходимости. Для исследованной задачи найден оптимальный релаксационный параметр. Исследуется вычислительная эффективность и систематическая погрешность метода на различных сетках.

THE SOLUTION OF A TWO-DIMENSIONAL EQUATION BY THE NONLINEAR ITERATION METHOD

The two-dimensional equation with the generalised boundary conditions has been solved using the nonlinear iteration method developed by B.N. Chetverushkin. The two methods: one described above and one with right marching have been compared. The relaxation approach has been used to these two methods to make a better convergence. The optimal relaxation parameter has been found. The calculation effectiveness and systematic error are now being developed using different calculation approaches.

1. ВВЕДЕНИЕ

При решении уравнения переноса теплового излучения (в частности, в области теплообмена излучением применительно к задачам радиационной газовой динамики современной) возникает необходимость получения решения уравнение Пуассона за максимально короткий отрезок времени. Оптимизации одного из метода решения этого уравнения посвящена данная работа.

2. НЕЛИНЕЙНЫЙ ИТЕРАЦИОННЫЙ α-β-АЛГОРИТМ

В данной работе рассматривается нелинейный итерационный α - β алгоритм Б.Н. Четверушкина для решения конечно-разностных уравнений, записанных в каноническом виде

$$A_{i,j}U_{i-1,j} + B_{i,j}U_{i+1,j} - C_{i,j}U_{i,j} + D_{i,j}U_{i,j-1} + E_{i,j}U_{i,j+1} + F_{i,j} = 0, \qquad (1)$$

$$i = 1, 2...Nx - 1; \quad j = 1, 2...Ny - 1.$$

Такой вид конечно-разностных уравнений получается из исходных уравнений в частных производных с использованием, например, интегро-интерполяционного метода. Ставилась задача нахождения функции U и сравнение полученного решение с заранее известным точным решением U_{точн}. К данному уравнению, в частности, приводится приближенный вид уравнения переноса излучения, получаемый в P1-приближении метода сферических гармоник. В рассматриваемом случае исследуется специальный вид функции:

$$F_{i,j} = \sin(\pi x_i) * \sin(\pi y_j).$$

Граничные условия задаются в обобщенном виде:

$$U_{1,j} = \varphi_{\alpha,j} U_{2,j} + \xi_{\alpha,j} , \qquad (2)$$

$$U_{Nx,j} = \varphi_{\gamma,j} U_{2,j} + \xi_{\gamma,j} , \qquad (3)$$

$$U_{i,1} = \varphi_{\overline{\alpha},j} U_{2,j} + \xi_{\overline{\alpha},j}, \qquad (4)$$

$$U_{i,Ny} = \varphi_{\overline{\gamma},j} U_{2,j} + \xi_{\overline{\gamma},j} .$$
⁽⁵⁾

Решение системы ищется в виде четырех соотношений следующего вида:

$$U_{i,j} = \alpha_{i+1,j} U_{i+1,j} + \beta_{i+1,j}, \qquad (6)$$

$$U_{i,i} = \gamma_{i-1,i} U_{i-1,i} + d_{i-1,i}, \qquad (7)$$

$$U_{i,j} = \overline{\alpha}_{i,j+1} U_{i,j+1} + \overline{\beta}_{i,j+1} , \qquad (8)$$

$$U_{i,j} = \overline{\gamma}_{i,j-1} U_{i,j-1} + \overline{d}_{i,j-1} \,. \tag{9}$$

Соотношения (6)–(9) попарно подставляются в уравнение (1), после чего получаются формулы для коэффициентов, стоящих в условиях (6)–(9). Эти итерационные коэффициенты можно разделить на две группы независимых коэффициентов, соответственно итерации проводятся в два шага: сначала происходит наименее ресурсоемкий процесс α итерации, в котором вычисляется матрица коэффициентов γ' .

Формулы (8)-(9) представляются в виде

$$U_{i,j-1} = \overline{\alpha}_{i,j}U_{i,j} + \beta_{i,j}, \qquad (8')$$

$$U_{i,j+1} = \overline{\gamma}_{i,j} U_{i,j} + d_{i,j} , \qquad (9')$$

после чего происходит их подстановка в уравнение (1). При этом получается трехточечное уравнение, прогоняемое только по параметру *i*. В результате получаем уравнение

$$\begin{split} A_{i,j}U_{i-1,j} + B_{i,j}U_{i+1,j} - \left(C_{i,j} - D_{i,j}\overline{\alpha}_{i,j} - E_{i,j}\overline{\gamma}_{i,j}\right)U_{i,j} + \\ + D_{i,j}\overline{\beta}_{i,j} + E_{i,j}\overline{d}_{i,j} + F_{i,j} = 0 \;. \end{split}$$

Затем в полученное уравнение поочередно подставляяются формулы (6)–(7). Уравнение приобретает вид

$$B_{i,j}U_{i+1,j} - (C_{i,j} - D_{i,j}\overline{\alpha}_{i,j} - E_{i,j}\overline{\gamma}_{i,j} - A_{i,j}\alpha_{i,j})U_{i,j} + A_{i,j}\beta_{i,j} + D_{i,j}\overline{\beta}_{i,j} + E_{i,j}\overline{d}_{i,j} + F_{i,j} = 0.$$
(10)

И

$$A_{i,j}U_{i+1,j} - (C_{i,j} - D_{i,j}\overline{\alpha}_{i,j} - E_{i,j}\overline{\gamma}_{i,j} - B_{i,j}\gamma_{i,j})U_{i,j} + D_{i,j}\overline{\beta}_{i,j} + E_{i,j}\overline{d}_{i,j} + B_{i,j}d_{i,j} + F_{i,j} = 0.$$
(11)

...

После сравнения с формулами (6)–(7) находятся коэффициенты $\alpha_{i+1,j}, \beta_{i+1,j}, \gamma_{i-1,j}, d_{i-1,j}$.

$$\begin{split} \alpha_{i+1,j} &= B_{i,j} / \Big(C_{i,j} - \alpha_{i,j} A_{i,j} - \overline{\alpha}_{i,j} A_{i,j} - \overline{\gamma}_{i,j} \overline{B}_{i,j} \Big), \\ i &= 2, 3 \dots Nx - 1; \\ \gamma_{i-1,j} &= A_{i,j} / \Big(C_{i,j} - \gamma_{i,j} B_{i,j} - \overline{\alpha}_{i,j} \overline{A}_{i,j} - \overline{\gamma}_{i,j} \overline{B}_{i,j} \Big), \\ i &= Nx - 1, \dots 3, 2; \\ \beta_{i+1,j} &= \frac{\Big(F_{i,j} + \beta_{i,j} A_{i,j} + \overline{\beta}_{i,j} \overline{A}_{i,j} + \overline{d}_{i,j} \overline{B}_{i,j} \Big)}{\Big(C_{i,j} - \alpha_{i,j} A_{i,j} - \overline{\alpha}_{i,j} \overline{A}_{i,j} - \overline{\gamma}_{i,j} \overline{B}_{i,j} \Big)}, \\ i &= 2, 3 \dots Nx - 1; \\ d_{i-1,j} &= \frac{\Big(F_{i,j} + d_{i,j} B_{i,j} + \overline{\beta}_{i,j} \overline{A}_{i,j} + \overline{d}_{i,j} \overline{B}_{i,j} \Big)}{\Big(C_{i,j} - \gamma_{i,j} B_{i,j} - \overline{\alpha}_{i,j} \overline{A}_{i,j} - \overline{\gamma}_{i,j} \overline{B}_{i,j} \Big)}, \\ i &= Nx - 1, \dots 3, 2. \end{split}$$

Аналогично, подставляя уравнения (6)–(7), переписанные аналогично уравнениям (8'), (9'), получаем прогоночные формулы для коэффициентов $\overline{\alpha}_{i+1,j}, \overline{\beta}_{i+1,j}, \overline{\gamma}_{i-1,j}, \overline{d}_{i-1,j}$.

$$\begin{split} \overline{\alpha}_{i+1,j} &= \overline{B}_{i,j} \left/ \left(C_{i,j} - \alpha_{i,j} A_{i,j} - \overline{\alpha}_{i,j} \overline{A}_{i,j} - \gamma_{i,j} B_{i,j} \right); \\ \overline{\gamma}_{i-1,j} &= \overline{A}_{i,j} \left/ \left(C_{i,j} - \gamma_{i,j} B_{i,j} - \alpha_{i,j} A_{i,j} - \overline{\gamma}_{i,j} \overline{B}_{i,j} \right); \\ \overline{\beta}_{i+1,j} &= \frac{\left(F_{i,j} + \beta_{i,j} A_{i,j} + \overline{\beta}_{i,j} \overline{A}_{i,j} + d_{i,j} B_{i,j} \right)}{\left(C_{i,j} - \alpha_{i,j} A_{i,j} - \overline{\alpha}_{i,j} \overline{A}_{i,j} - \gamma_{i,j} B_{i,j} \right)}; \\ \overline{d}_{i-1,j} &= \frac{\left(F_{i,j} + d_{i,j} B_{i,j} + \overline{\beta}_{i,j} \overline{A}_{i,j} - \gamma_{i,j} B_{i,j} \right)}{\left(C_{i,j} - \gamma_{i,j} B_{i,j} - \overline{\alpha}_{i,j} \overline{A}_{i,j} - \gamma_{i,j} B_{i,j} \right)}. \end{split}$$

Полученные прогоночные коэффициенты разбиваются на пары α , γ , $\overline{\alpha}$, $\overline{\gamma}$ и β , d, $\overline{\beta}$, \overline{d} . Первые три коэффициента образуют α -прогонку, причем в прямом цикле α -прогонки находятся коэффициенты $\alpha^{s+l/2}$, $\gamma^{s+l/2}$, $\overline{\alpha}^{s+l/2}$, а в обратном цикле находятся окончательные для данной итерации коэффициенты α^{s+l} , γ^{s+l} , $\overline{\alpha}^{s+l}$.

Аналогичным образом проходит β -прогонка. Ключевым моментом обоих циклов является выбор начального приближения массивов $\overline{\gamma}_{i,j}$ и $\overline{d}_{i,j}$. В данной работе выбирались нулевые приближения, однако существует несколько методов задания ненулевого приближения массива начального приближения наиболее трудоемкого β -процесса.

Начальные приближения для других прогоночных коэффициентов находились из граничных условий (2)–(5) при равенстве соответствующих индексов.

Окончательный расчет функции U производился по формулам

$$\begin{split} U_{i,1} &= \left(\overline{d}_{i,1}^{s+1} \varphi_{i,\overline{\alpha}} + \xi_{\overline{\alpha},i}\right) / \left(1 - \varphi_{i,\overline{\alpha}} \overline{\gamma}_{i,1}^{s+1}\right), \\ &i = 2, \dots Nx - 1; \\ U_{i,j} &= \overline{\gamma}_{i,j-1}^{s+1} U_{i,j-1} + \overline{d}_{i,j-1}^{s+1}, \\ &i = 2, \dots Nx - 1, \quad j = 2, \dots Ny - 1; \\ U_{i,Ny} &= \varphi_{i,\overline{\gamma}} U_{i,Ny-1} + \xi_{i,\overline{\gamma}}, \quad i = 2, \dots Nx - 1; \\ U_{1,j} &= \varphi_{\alpha,j} U_{2,j} + \xi_{\alpha,j}, \quad j = 2, \dots Ny; \\ U_{Nx,i} &= \varphi_{\gamma,i} U_{Nx-1,i} + \xi_{\gamma,i}, \quad j = 2, \dots Nx \;. \end{split}$$

2.1. Применение нелинейного итерационного α-β-алгоритма к решению уравнения Пуассона

Уравнение (1) решалось на трех видах сеток: $10 \times 10, 50 \times 50, 100 \times 100.$

Характерные параметры, за которыми велось наблюдение, были: количество итераций, системное время расчета обоих итерационных процессов, погрешность нахождения прогоночных коэффициентов $\overline{\gamma}_{i,j}$ и $\overline{d}_{i,j}$, а также погрешность найденной функции U по сравнению с заранее известным точным решением.

Вначале решалось пятиточечное уравнение с правой частью $\sin(\pi x)^* \sin(\pi y)$. На сетке 10×10 итерационные циклы велись с точностью 6.8×10^{-7} и 4.0×10^{-7} соответственно. При этом количество итераций α -цикла составило 4, β -цикла – 18. Расчетное время соответственно 0.015 и 0.03 с. Погрешность решения по сравнению с точным значением искомой функции $(U = (1/2\pi^2)\sin(\pi x)^*\sin(\pi y))$ составила 0.001.

Рис.1. Абсолютная ошибка |U-U_{точн}| для сетки 10×10

Далее метод применялся на более подробных сетках 100×100 и 200×200. В этих случаях итерации велись с точностью 10^{-8} . Для сетки 100×100 α -цикл попрежнему состоял из 4 итераций. Что касается β цикла, количество итерации возросло до 1160. Время выполнения α -цикла существенно не возросло, оно составило 0.03 с, а время β -цикла возросло до 6.5 с.

Рис. 2. Абсолютная ошибка |U-U_{точн} |для сетки 100×100

И, наконец, для сетки 200×200 количество итераций α -цикла составило по-прежнему 4, для β -цикла количество итераций составило 4460. Время выполнения α -цикла существенно не возросло, оно составило 0.047 с, а время β -цикла составило 57 с.

Рис.3. Абсолютная ошибка функци
и $|U\text{-}U_{\text{точн}}|$ для сетки 200×200

Установлено, что для получения относительной погрешности расчета функции U (по сравнению с точным решением) в 1%, достаточно вести оба итерационных цикла с точностью 0.1%.

2.2. Релаксация нелинейного итерационного α-β-алгоритма

До решения двумерного уравнения переноса методом Б.Н. Четверушкина было решено это же уравнение методом правой прогонки коэффициентов с применением релаксации в виде $U^{p+1} = \omega U^p + (1-\omega)U^{p-1}$, где надстрочный индексом обозначен временной слой расчета. Необходимо отметить, что был создан код, реализующий метод правой прогонки для решения уравнения Пуассона по всем значения релаксационного параметра ω от 0.1 до 1.9 с шагом 0.1. Таким образом, методом численного эксперимента находилось оптимальное значение релаксационного параметра, которое позволило сократить количество итерации метода правой прогонки с 4300 до 1360. При этом время уменьшилось с 12.09 до 4.03 с. Решение было получено с точностью 10⁻⁶.

Таким образом, получается, что на некоторых сетках метод Б.Н. Четверушкина уступает по производительности методу правой прогонки. С целью оптимизации метода Б.Н. Четверушкина была предпринята попытка его релаксации.

Релаксация применялась только относительно βцикла, как наиболее ресурсоемкого.

Коэффициент $d_{i,j}$ вычислялся по следующей формуле:

$$\overline{d}_{i,j}^{s+1/2} = \frac{1}{1/(1-\omega)\overline{d}_{i,j}^s} + \frac{\omega}{(1-\omega)\overline{d}_{i,j}^{s-1/2}}$$

При $\omega > 0$ имела место верхняя релаксация, при $\omega < 0$ имела место нижняя релаксация. Методом подбора был найден релаксационный параметр $\omega = 0.31$, при котором на сетке 100×100 количество итерации упало почти в 10 раз, и составило 119. При этом время расчета также уменьшилось на порядок и составило 0.65 с. Для наглядности приводится таблица со значениями коэффициента релаксации и соответствующими ему количеством итерации, системным временем расчета и относительной погрешностью полученного решения.

ω	Время, с	Ν	ε×10 ⁵
0.1	3.265	570	3
0.2	2.2	348	6
0.3	0.65	100	8
0.31	0.71	119	8
0.33	2.62	289	8
-0.4	9.5	1583	100

Был отмечен один интересный вычислительный эффект. При $\omega > 0.34$ ошибка β -цикла начинала колебаться. Этот цикл не сходился за разумное число итераций (порядка 20000). При дальнейшем увеличении релаксационного параметра ω просто расходился. Такой же эффект наблюдался при уменьшении релаксационного параметра в сторону отрицательных значений. При $\omega < -0.5$ также имело место колебание погрешности расчетов.

Интересно наблюдать за поведением ошибки при увеличении количества осцилляций функции в правой части решаемого уравнения.

Если, например, взять не одну гармонику, укладывающуюся на решаемом отрезке, а на порядок больше, то можно заметить, что количество итераций, необходимое для достижения заданной точности итерационных циклов (итерации в этом случае велись с относительной точностью 10⁻⁸), значительно падает, примерно на порядок. Также уменьшается и системное время, требуемое для расчета. Однако при этом, погрешности возрастают на порядки величин. Если брать правую часть в виде $sin(10\pi x)*sin(10\pi y)$, то относительная ошибка полученного решения по сравнению с точным решением увеличивается с 8.1×10^{-5} до 8.1×10^{-3} , т.е. на два порядка. При дальнейшем увеличении разбиений, вплоть до того, что на каждую расчетную ячейку приходится одно колебание, т.е. при правой части $sin(100\pi x)sin(100\pi y)$, ошибка приближается к 60 %.

3. ВЫВОДЫ О ПРИМЕНИМОСТИ НЕЛИНЕЙНОГО ИТЕРАЦИОННОГО α-β-АЛГОРИТМА К РЕШЕНИЮ УРАВНЕНИЯ ПУАССОНА

Вычислительные эксперименты на различных сетках при разных правых частях уравнения Пуассона позволяют сделать следующие выводы:

- Количество итераций метода Четверушкина резко возрастает с увеличение числа узлов расчетной сетки, и, начиная с определенного числа узлов, данный метод уступает в производительности более просто реализуемому методу правой прогонки.
- При попытке релаксации метода Четверушкина на сетке 100×100 было достигнуто резкое сокращение времени и количества итераций.
- Имеет место сильное (на два порядка) увеличение ошибки решения при увеличении количества осцилляций правой части.

4. БЛАГОДАРНОСТИ

Работа выполнена в рамках проекта РФФИ 07-01-00133 и программы фундаментальных исследований Отделения энергетики, машиностроения, механики и процессов управления Российской академии наук.

СПИСОК ЛИТЕРАТУРЫ

1. Суржиков С.Т. "Физическая механика газовых разрядов", изд. МГТУ им. Н.Э. Баумана, Москва, 2006 г.

2. *Четверушкин Б.Н.* Об одном алгоритме решения разностных уравнений//ЖВМиФ. 1976. Т. 16. № 2. С. 519–524.