Extrapolation of Heat Transfer Parameters in Underexpanded Air Jets in RF-Plasmatron to High-Speed Flows past a Sphere in the Earth Atmosphere

A. F. Kolesnikov¹, V. I. Sakharov²

 ¹ Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, 119526, Russia
 ² Institute of Mechanics, Lomonosov Moscow State University, Moscow, 119192, Russia
 koles@ipmnet.ru, sakharov@imec.msu.ru

Abstract

On the base of the Concept of Local Heat Transfer Simulation parameters of the underexpanded dissociated air jets around a cylindrical model with a flat face in the wide range of the RF-plasmatron IPG-4 working regimes are recalculated to a sphere re-entry conditions in the Earth atmosphere.

Keywords: induction plasmatron, underexpanded jets, numerical modeling, chemical non-equilibrium, air plasma, heat transfer modeling.

a cylindrical water-cooled model with a flat face

The temperature pattern of highspeed flow past a sphere

The	parameters	of su	personic	flow	past a	cvlindrical	model	Rm =	0.01m in	radius
Inc	parameters	or sul	JUISOINC	nowj	pasia	cymui icai	mouti	1	0.01111111	Taulus

N⁰ regime	G, g/c	Z, mm	N_{ap} , kW	p_{∞} , N/m ²	V _S , m/c	H _{se0} , MJ/kg	T_S, K	$ ho_{S}$, kg/m 3	p_{m0} , N/m ²	$\left(\frac{\mathrm{d}U_S}{\mathrm{d}r}\right)_{e0}\mathrm{c}^{-1}$
P1	2.4	40	45	830	3100	26.5	3150	0.00028	2400	0.684×10 ⁵
P2	4.8	30	64	120	3100	33.	3100	0.00055	4930	1.23×10^{5}

The parameters of hypersonic uniform flow past a sphere in the Earth atmosphere, calculated for HF IPG-4 plasmatron operation regimes using the theory of the local modeling of heat transfer at the stagnation point

N⁰ regime	H_{∞} , MJ/kg	V_{∞} , m/c	p_∞ , kg/m 3	T_{∞}, \mathbf{K}	R_w^0 , cm	R_w , cm
E1	26.5	7280	0.45×10^{-4}	210	6.94	6.4
E2	33.	8124	0.747×10^{-4}	217.4	3.97	5.0

УДК 533.6.011.8

Экстраполяция параметров теплообмена модели в недорасширенных струях диссоциированного воздуха в ВЧ-плазмотроне на условия обтекания сферы высокоскоростным потоком в земной атмосфере

А.Ф. Колесников¹, В.И.Сахаров²

¹ Федеральное государственное бюджетное учреждение науки Институт проблем механики им. А.Ю. Ишлинского Российской академии наук, Россия, Москва, 119526, пр. Вернадского, 101/1
² Научно-исследовательский Институт механики МГУ им. М.В. Ломоносова, Россия, Москва, 119192, Мичуринский пр., 1 koles@ipmnet.ru sakharov@imec.msu.ru

Аннотация

На основе концепции локального моделирования теплообмена параметры сверхзвукового обтекания цилиндрической модели с плоским торцом в недорасширенных струях диссоциированного воздуха в широком диапазоне рабочих параметрах ВЧ-плазмотрона ВГУ-4 пересчитаны на условия входа сферы в атмосферу Земли с гиперзвуковой скоростью. Установлено, что нормированные зависимости тепловых потоков в точках торможения на модели и сфере от эффективного коэффициента каталитической рекомбинации атомов О и N для условий эксперимента на ВЧ-плазмотроне ВГУ-4 и входа в атмосферу Земли, связанных условиями локального моделирования теплообмена, подобны, что ведет к формуле для экстраполяции рассчитанного теплового потока к модели в плазмотроне на условия гиперзвукового обтекания сферы.

Ключевые слова: индукционный плазмотрон, недорасширенная струя, теплообмен, численное моделирование, уравнения Навье – Стокса, химическая неравновесность, воздушная плазма, моделирование теплообмена.

1. Введение

ВЧ-плазмотрон ВГУ-4 (ИПМех РАН) мощностью 100 кВт – многофункциональная установка для исследований теплофизики высокоэнтальпийных течений газов, теплообмена и термохимического взаимодействия потоков диссоциированных газов с поверхностью [1]. Установка может работать на воздухе и других газах (азот, углекислый газ, аргон) в режимах до- и сверхзвукового истечения плазмы из разрядного канала. Выбор того или другого режима зависит от конкретной задачи эксперимента. Например, для определения каталитических характеристик поверхности материала оптимален дозвуковой режим, в котором набегающий на модель струйный поток химически равновесный, а пограничный слой близок к замороженному [2]. С другой стороны, максимальные плотности теплового потока в критической точке водоохлаждаемой модели достигнуты в сверхзвуковых потоках воздушной плазмы [3, 4]. Использование чистых плазменных струй индукционных плазмотронов позволяет наиболее полно моделировать термохимическое взаимодействие диссоциированного пограничного слоя с поверхностью материалов тепловой защиты в окрестности носового затупления спускаемых аппаратов. При выборе режима испытаний образцов материалов в осесимметричной конфигурации обтекания модели необходимо руководствоваться критерием моделирования [5,6], включающим отношение эффективных радиусов модели и натурного тела. При выполнении условий локального моделирования в дозвуковых высокоэнтальпийных потоках при $R_m \ll R_w$ воспроизводятся полная энтальпия, давление торможения, толщина пограничного слоя, распределения температуры и концентрации химических компонентов поперёк пограничного слоя, а, следовательно, и тепловой поток, и температура поверхности исследуемого материала [5,6].

В [7] на основе теории локального моделирования термохимического взаимодействия высокоэнтальпийных потоков с неразрушаемой поверхностью [5,6] для трех режимов обтекания модели недорасширенной струей диссоциированного углекислого газа в ВЧ-плазмотроне ВГУ-4 [8] рассчитаны параметры обтекания сферы высокоскоростным потоком углекислого газа. На основании численного моделирования установлено подобие нормализованных тепловых потоков для условий экспериментов на ВЧ-плазмотроне и соответствующих условий обтекания сферы при входе в атмосферу Марса. Настоящая работа является развитием подхода [7] и устанавливает подобие нормализованных тепловых потоков для условий экспериментов на ВЧ-плазмотроне [9] и соответствующих условий обтекания сферы высокоскоростным потоком воздуха в атмосфере Земли.

2. Численное моделирование

Численное моделирование течений в разрядном канале плазмотрона с индукционным нагревом газов и в истекающих недорасширенных струях диссоцированного и частично ионизованного воздуха проводилось для условий работы установки ВГУ-4. Применялась технология, основанная на комплексе программ численного интегрирования уравнений Навье – Стокса [10] и специальных программ-генераторов, взаимодействующих с базами данных по термодинамическим и переносным свойствам индивидуальных газовых веществ. Расчет высокочастотного вихревого электрического поля выполнен на основе локально одномерного приближения [11]. При численном моделировании учитывались 11 нейтральных и ионизованных компонентов смеси воздушной плазмы: O, N, O₂, N₂, NO, O⁺, N⁺, NO⁺, O₂⁺, N_2^+ и е⁻. Термодинамические и термохимические данные для рассматриваемых компонентов брались из [12]. Числовые значения констант химических реакций, протекающих в высокотемпературной воздушной смеси, заимствованы из [13–16]. Транспортная модель необходима для вычисления вязких потоков массы компонентов, импульса и энергии в многокомпонентном газе. Молярные диффузионные потоки определялись из соотношений Стефана-Максвелла для частично ионизованной смеси газа [17] с использованием условий квазинейтральности смеси и отсутствия тока проводимости в продольном и радиальном направлениях. Амплитуды высокочастотного электрического тока и напряжения электрического поля в окружном направлении связаны законом Ома. Термодиффузией пренебрегалось. Для вычисления коэффициентов вязкости и теплопроводности газовой смеси использовались приближенные формулы Уилке – Васильевой [18]. Проводимость плазмы определялась из соотношения Стефана – Максвелла для электронной компоненты в пренебрежении скоростью диффузии тяжелых частиц и градиентов параметров в окружном направлении [19].

Бинарные коэффициенты диффузии вычислялись по двухпараметрической интерполяционной формуле [20] через сечения упругих столкновений диффузионного типа нейтральных атомов и молекул между собой и с ионами. Взаимодействие заряженных частиц описывается в приближении парных столкновений с использованием экранированного кулоновского потенциала. Для расчета интегралов столкновений этого типа используются аппроксимационные зависимости, приведенные в [21]. Числа Шмидта для всех компонентов, необходимые при расчете коэффициентов вязкости и теплопроводности, вычислялись в предположении, что отношение значений всех сечений столкновений «вязкостного» типа к соответствующим сечениям «диффузионного» типа равно 1.1.

3. Экстраполяция на условия обтекания сферы высокоскоростным потоком воздуха

При анализе экспериментальных и расчетных данных по теплообмену [9] возникает вопрос о том, каким параметрам обтекания сферы при входе в атмосферу Земли можно поставить в соответствие условия теплообмена цилиндрической водоохлаждаемой модели с плоским торцом радиуса $R_m = 0.01$ м при обтекании ее недорасширенной струей диссоциированного воздуха в плазмотроне ВГУ-4 [9] на некотором расстоянии модели Z_m от среза звукового сопла с диаметром выходного сечения $D_S = 40$ мм.

Для анализа этого вопроса воспользуемся условиями локального моделирования теплообмена в критической точке, сформулированными в [5, 6] на основе теории ламинарного диссоциированного пограничного слоя.

Эти условия представляют собой равенства полных энтальпий, давлений торможения и градиентов скорости на внешних границах пограничных слоев на теле и модели

$$H_{\infty} = \frac{V_{\infty}^2}{2} = H_{se0}, \qquad (3.1)$$

$$p_{w0} = \rho_{x} V_{x}^{2} = p_{m0}, \qquad (3.2)$$

$$\beta_{e0} = \left(\frac{\partial U_s}{\partial r}\right)_{e0} \tag{3.3}$$

Здесь в (3.1)–(3.3) введены H – полная энтальпия; p – давление; ρ – плотность; V – продольная составляющая скорости; U – поперечная составляющая скорости; r – координата вдоль поверхности модели; индексы ∞ и *s* относятся к гиперзвуковому потоку и сверхзвуковой струе; e – к внешней границе пограничного слоя; 0 – к линии торможения; w и m – к поверхностям тела и модели соответственно.

В случае гиперзвукового обтекания затупленного тела равномерным потоком при больших числах Re в приближении тонкого ударного слоя [22] последнее равенство может быть конкретизировано в виде [5]

$$\left(\frac{8}{3}\frac{\rho_{\infty}}{\rho_{sh}}\right)^{1/2}\frac{V_{\infty}}{R_{w}} = \left(\frac{\partial U_{s}}{\partial r}\right)_{e0}$$
(3.4)

Здесь ρ_{sh} – плотность газа за ударной волной.

Условий (3.1), (3.2) и (3.4) достаточно, чтобы параметры сверхзвукового обтекания модели неравномерным потоком можно было пересчитать на условия обтекания сферы радиуса R_{w0} высокоскоростным равномерным потоком

$$V_{\infty} = \sqrt{2H_{se0}} , \qquad (3.5)$$

$$\rho_{\infty} = \frac{p_{m0}}{V_{\infty}^2},\tag{3.6}$$

$$R_{w}^{0} = \left(\frac{8}{3}\frac{\rho_{\infty}}{\rho_{sh}}\right)^{1/2} V_{\infty} \left(\frac{\partial U_{s}}{\partial r}\right)_{e0}^{-1}$$
(3.7)

В сверхзвуковой струе параметры на внешней границе пограничного слоя определялись по границе линейных участков рассчитанных профилей энтальпии и градиента скорости. Параметры сверхзвукового обтекания цилиндрической водоохлаждаемой ($T_w = 300$ K) модели с плоским торцом радиуса $R_m = 0.01$ м, расположенной на расстояниях Z_m от среза разрядного канала, приведены в табл. 1 для двух экспериментальных режимов ВЧ-плазмотрона ВГУ-4 [9] (индекс *s* относится к параметрам на оси струи непосредственно перед скачком уплотнения).

Таблица 1

Режимы обтекания недорасширенной струей воздуха цилиндра с плоским торцом в плазмотроне ВГУ-4 и некоторые рассчитанные параметры сверхзвуковой струи перед моделью

№ режима	<i>G</i> , г/с	<i>Z</i> , мм	N _{ар} , кВт	p_{∞} , H/м ²	V _S , м/с	<i>H_{se0}</i> , МДж/кг	<i>T_s</i> , K	$ ho_{S}$, кг/м 3	<i>p</i> _{m0} , Н/м ²	$\left(\frac{\mathrm{d}U_S}{\mathrm{d}r}\right)_{e0}\mathrm{c}^{-1}$
P1	2.4	40	45	830	3100	26.5	3150	0.00028	2400	0.684×10^{5}
P2	4.8	30	64	120	3100	33.	3100	0.00055	4930	1.23×10^{5}

Вычисленные для режимов P1–P2 по формулам (3.5)–(3.7) параметры обтекания сферы воздухом в режимах E1–E2 приведены в табл. 2.

Таблица 2

Режимы гиперзвукового обтекания сферы в атмосфере, Земли, эквивалентные по значению теплового потока в точке торможения сверхзвуковому обтеканию воздухом цилиндра с плоским торцом в плазмотроне ВГУ-4.

№ режима	H_{∞} , МДж/кг	V_{∞} , м/с	p_{∞} , кг/м 3	T_{∞}, \mathbf{K}	R^0_w , см	R_w , см
E1	26.5	7280	0.45×10^{-4}	210	6.94	6.4
E2	33.	8124	0.747×10^{-4}	217.4	3.97	5.0

Для параметров, приведенных в табл. 2, численно решалась задача обтекания равномерным воздушным потоком сферы с холодной ($T_w = 300$ K) абсолютно каталитической поверхностью в рамках уравнений Навье – Стокса с использованием того же численного метода и тех же кинетических, диффузионных и переносных моделей, которые применялись при моделировании течений в разрядном канале плазмотрона и при обтекании моделей недорасширеными струями. По этим решениям вычислялись плотности тепловых потоков в точке торможения, которые сравнивались с рассчитанными тепловыми потоками к холодной абсолютно каталитической поверхности модели в двух сверхзвуковых режимах обтекания диссоциированным воздухом P1–P2. Различие в тепловых потоках к абсолютно каталитической стенке достигает 30 %, что существенно выше, чем при моделировании теплообмена на сфере радиуса $R_w ~ 1$ м в дозвуковых потоках диссоциированного азота и воздуха [6, 23, 24].

Причина такого различия, как уже было отмечено в [7] при исследовании корреляции теплообмена в недорасширенных струях диссоциированного углекислого газа и при входе сферы в марсианскую атмосферу, заключается в использовании равенства (3.7), полученного в рамках теорий пограничного слоя [5] и тонкого ударного слоя [22], при малых числах Re, когда обтекание происходит в режиме слившегося вязкого ударного слоя. В этом случае в формулу для градиента скорости нужно вводить поправки на малые числа Re, как это предлагалось в [25]. Такие поправки могут быть найдены из численных решений задачи обтекания сферы высокоскоростным равномерным воздушным потоком в некотором диапазоне радиуса сферы, что предполагает дополнительный объем вычислений. В связи с этим обстоятельством предлагается заменить условие (3.7) на требование равенства тепловых потоков к холодной ($T_w = 300 \text{ K}$) или равновесно излучающей абсолютно каталитической поверхности в критической точке тела и модели

$$q_{wcat} = q_{mcat} \tag{3.8}$$

Радиус сферы R_w с идеально каталитической поверхностью может быть определен расчетным путем из этого условия, а начальное приближение R_w^0 можно вычислить по формуле (3.7). Так рассчитанные радиусы сфер для двух режимов обтекания E1 и E2 имеют значения $R_w = 0.064$ и 0.05 м.

С использованием уточненных значений радиуса сферы рассчитаны тепловые потоки в точке торможения на сфере в гипотетических режимах E1 и E2, а также тепловые потоки к критической точке цилиндрической модели в экспериментальных режимах P1 и P2 во всем диапазоне эффективного коэффициента рекомбинации $0 \le \gamma \le 1$ для холодной стенки. При этом считалось, что диффузионные потоки компонентов O и N соответственно пропорциональны массовым концентрациям этих компонентов и $\gamma_{\rm O} = \gamma_{\rm N} = \gamma$ [2].

Из зависимостей $q_w(\gamma)$, полученных в расчетах, следует, что плотности тепловых потоков к модели в струе плазмотрона и к сфере при гиперзвуковом обтекании хорошо согласуются для высококаталитических поверхностей $(0.2 \le \gamma \le 1)$, но с уменьшением γ разница в тепловых потоках увеличивается. Тепловые потоки к некаталитической поверхности различаются почти в два раза, что существенно больше, чем отмечалось в случае моделирования теплообмена в дозвуковых потоках азота [23] и воздуха [6, 24] при условии $R_m \ll R_w$. Основная причина различий конвективных потоков в случае некаталитической стенки – разница температур на внешних границах пограничных слоев на сфере и модели. При обтекании сферы высокоскоростным потоком воздуха температура T_e существенно выше, чем при обтекании модели сверхзвуковой струей в плазмотроне.

Изложенный выше расчетный подход использован для анализа возможности моделирования тепловых потоков к критической точке на равновесно излучающей стенке (степень черноты поверхности $\varepsilon = 0.85$) с граничным условием для теплового потока

$$q_{m,w} = \varepsilon \sigma T_w^4 \tag{3.9}$$

Качественно выводы по сопоставлению тепловых потоков к сфере и модели для равновесно излучающей поверхности во всем диапазоне $0 \le \gamma \le 1$ такие же, как для холодной стенки. Тем не менее, есть характеристика теплообмена, которая подобна при обтекании модели в режимах P1, P2 и сферы в режимах E1, E2. На рис. 1, 2 для соответствующих режимов обтекания сферы и модели представлены расчетные зависимости тепловых потоков от эффективного коэффициента поверхностной рекомбинации атомов γ в нормализованном виде

$$q_{w}^{*} = \frac{q_{w} - q_{w0}}{q_{w\infty} - q_{w0}},$$
(3.10)

где $q_{w\infty}$ и q_{w0} – тепловые потоки к абсолютно каталитической и некаталитической поверхностям.

$$q_{w}^{f} = \left(q_{w}^{e} - q_{w0}^{e}\right) \times \frac{q_{w\infty}^{f} - q_{w0}^{f}}{q_{w\infty}^{e} - q_{w0}^{e}} + q_{w0}^{f}$$
(3.11)

Здесь верхние индексы *e* и *f* относятся к расчетам для условий эксперимента и входа в атмосферу. Естественно, экстраполяция (2.11), предложенная впервые в [24], возможна, если вычислены четыре предельные значения тепловых потоков $q_{wx}^{e,f}$ и $q_{w0}^{e,f}$.

Рис. 1. Нормализованные тепловые потоки к холодной (а) и равновесно радиационной (б) стенкам модели и сферы в режимах Р1 и Е1: 1, 2 – относятся к расчетам обтекания сферы и цилиндра соответственно

Рис. 2. Нормализованные тепловые потоки к холодной (а) и равновесно радиационной (б) стенкам модели и сферы в режимах Р2 и Е2: обозначения как рис. 1

Ранее свойство подобия тепловых потоков, нормированных на свои предельные значения, было установлено для случая моделирования теплообмена в дозвуковых потоках воздуха [6, 24] при условии $R_m \ll R_w$. Этот, теперь уже общий, результат сразу ведет к формуле для экстраполяции рассчитанного для условий эксперимента [9] теплового потока к модели q_w^e на соответствующие условия обтекания сферы

Очевидно, что если в (3.11) в качестве подставить измеренное в эксперименте [9] значение теплового потока к медной охлаждаемой поверхности ($T_w = 300$ K) цилиндрической модели с плоским торцом радиуса 10 мм, обтекаемой недорасширенной струей диссоциированного воздуха, то в результате получим тепловой поток к охлаждаемой поверхности сферы, входящей в атмосферу при соответствующих параметрах обтекания.

На рис. 3 представлена рассчитанные картины изотерм при обтекании в режиме P1 недорасширенной воздушной струей модели, расположенной от среза сопла на расстоянии 40 мм, и соответствующая этому режиму картина изотерм течения около сферического затупления в режиме E1.

Рис. 3 Рассчитанные картины изотерм при обтекании модели и сферы в режимах P1 и E1 для равновесно излучающих поверхностей с конечной каталитичностью: γ = 0.1

На рис. 4 даны распределения давления (а) и температуры (б) вдоль линий симметрии течений около сферы (линия 1) и цилиндрической модели с плоским торцом (линия 2) для режимов Р1 и Е1. Несмотря на качественное различие в геометрии и параметрах обтекания тела и модели, профили давления и температуры в тонких слоях около поверхностей сферы и модели близки, а тепловые потоки в точке торможения к абсолютно каталитическим поверхностям и нормированные тепловые потоки к поверхностям с произвольной каталитической активностью одинаковы.

Рис. 4. Распределения давления (а) и температуры (б) в зависимости от расстояний от поверхности вдоль линий симметрии течений около сферы (1) и цилиндрической модели с плоским торцом (2) для режимов Е1 и Р1. Холодная абсолютно каталитическая стенка

Подчеркнем, что в настоящей работе все аэротермодинамические и гидродинамические параметры потоков воздуха для условий экспериментов на ВЧ-плазмотроне [9] и соответствующе им режимы входа гипотетической сферы в атмосферу Земли рассчитаны на основе единого численного метода и единых баз данных по термодинамическим, кинетическим и переносным свойствам. Описание численного алгоритма, граничных условий, использованных многоблочных сеток при расчетах течений в разрядном канале, ресивере и около модели в рабочей части плазмотрона ВГУ-4 приведены в [26]. Отметим, что в данной работе расчеты течений в плазмотроне не проводились. Были использованы результаты исследований, частично приведенные также в [26]. Расчеты обтекания сферы проводились на сетке 80х100 узлов в направлениях по нормали и вдоль ее поверхности соответственно.

4. Заключение

Рассчитаны параметры обтекания гипотетической сферы высокоскоростными потоками, соответствующие условиям обтекания цилиндрической модели с плоским носком радиуса 10 мм в ВЧ-плазмотроне ВГУ-4 сверхзвуковыми недорасширенными струями воздушной плазмы в двух режимах. Установлено, что нормированные зависимости тепловых потоков в точках торможения на модели и сфере от эффективного коэффициента каталитической рекомбинации атомов О и N для условий эксперимента на ВЧ-плазмотроне ВГУ-4 и входа в атмосферу Земли, связанных условиями локального моделирования теплообмена, подобны. Это ведет к формуле для экстраполяции экспериментально измеренного теплового потока в точке торможения на модели q_w^e на соответствующие условия обтекания сферы.

Данная работа выполнена при поддержке гранта РФФИ N14-01-00738.

Литература

- 1. Гордеев А.Н., Колесников А.Ф. Высокочастотные индукционные плазмотроны серии ВГУ. Сб. Актуальные проблемы механики: Физико-химическая механика жидкостей и газов. М.: Наука, 2010. С. 151–177.
- 2. Колесников А.Ф., Якушин М.И. Об определении эффективных вероятностей гетерогенной рекомбинации атомов по тепловым потокам к поверхности, обтекаемой диссоциированным воздухом // Математическое моделирование. 1989. Т. 1. № 3. С. 44–60.
- Гордеев А.Н., Колесников А.Ф. Новые режимы течения и теплообмена плазмы в высокочастотном индукционном плазмотроне ВГУ-4 // Всероссийская школа-семинар «Аэрофизика и физическая механика классических и квантовых систем» АФМ-2007. Сб. научн. трудов. М.: 2007 г. С. 130–136.
- 4. Гордеев А.Н., Колесников А.Ф. Экспериментальное моделирование теплообмена в ВЧ-плазмотроне с удлиненным секционированным разрядным каналом // Известия РАН. Механика жидкости и газа. 2010. № 3. С. 181–191.
- 5. Колесников А.Ф. Условия моделирования в дозвуковых течениях теплопередачи от высокоэнтальпийного потока к критической точке затупленного тела // Известия РАН. Механика жидкости и газа. 1993. № 1. С. 172–180.
- 6. Колесников А.Ф. Условия локального подобия термохимического взаимодействия высокоэнтальпийных потоков газов с неразрушаемой поверхностью // Теплофизика высоких температур. 2014. Т. 52. № 1. С. 118–125.
- 7. Колесников А.Ф., Сахаров В.И. Корреляция условий теплообмена модели в недорасширенных струях диссоциированного углекислого газа и при гиперзвуковом обтекании сферы в марсианской атмосфере// Известия РАН. Механика жидкости и газа. 2015. № 4. С. 131–138.
- 8. Гордеев А.Н., Колесников А.Ф., Сахаров В.И. Течение и теплообмен в недорасширенных струях неравновесных струях углекислого газа: эксперимент и численное моделирование // Теплофизика высоких температур. 2015. Т. 53. № 2. С. 284–290.
- 9. Гордеев А.Н., Колесников А.Ф., Сахаров В.И. Течение и теплообмен в недорасширенных струях индукционного плазмотрона // Известия РАН. Механика жидкости и газа. 2011, № 4 С. 130-142.
- Afonina N.E., Gromov V.G., Sakharov V.I. HIGHTEMP technique of high temperature gas flows numerical simulations // Proc. 5th Europ. Symp. on Aerothermodyn. Spase Vehicles. Cologne, Germany, 2004. SP 563. Noordwijk: ESTEC, 2004. Pp. 323–328.

- 11. Васильевский С.А., Колесников А.Ф. Численное моделирование течений равновесной индукционной плазмы в цилиндрическом канале плазмотрона // Известия РАН. Механика жидкости и газа. 2000. № 5. С. 164–173.
- 12. Термодинамические свойства индивидуальных веществ. Справочное издание. М.: Наука, 1978. Т.1. Кн. 1. 495с; Т.1. Кн. 2. 327 с.
- Ибрагимова Л.Б., Смехов Г.Д., Шаталов О.П. Константы скорости диссоциации двухатомных молекул в термически равновесных условиях // Известия РАН. Механика жидкости и газа. 1999. №1. С. 181–186.
- 14. Лосев С.А., Макаров В.Н., Погосбекян М.Ю. Модель физико-химической кинетики за фронтом очень сильной ударной волны в воздухе // Известия РАН. Механика жидкости и газа. 1995. №2. С. 169–182.
- 15. Park C., Howe J.T. and Jaffe R.L. Review of chemical-kinetic problems of future NASA missions, II: Eearth Entries // J. Thermophys and Heat Transfer. 1993. Vol.7. No.3. Pp. 385–398.
- 16. Losev S.A., Makarov V.N., Pogosbekyan M.Ju., Shatalov O.P., Nikol'sky V.S. Thermochemical nonequilibrium kinetic models in strong shock waves on air // AIAA Paper. 1990. № 1994. 13 p.
- 17. Гиршфелдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей. М.: Изд-во иностр. лит., 1961. 929 с.
- 18. Reid R.C., Prausnitz J.M., Sherwood T.K. The Properties of Gases and Liquids, McGraw-Hill, N. Y.: 1977. 688 p.
- 19. Сахаров В.И. Численное моделирование термически и химически неравновесных течений и теплообмена в недорасширенных струях индукционного плазмоторона // Известия РАН. Механика жидкости и газа. 2007. № 6. С. 157–168.
- 20. Afonina N.E., Gromov V.G. Thermochemical nonequilibrium computations for a MARS express probe // Proc. 3rd Europ. Symp. Aerothermodynam. Space Vehicles, ESTEC, Noordwijk, The Netherlands. 1998. Pp. 179–186.
- 21. Гордеев О.А., Калинин А.П., Комов А.Л., Люстерник В.Е., Самуйлов Е.В. Обзоры по теплофизическим свойствам веществ. ТФЦ-М: ИВТАН, 1985. №5 (55). 100 с.
- 22. Лунев В.В. Гиперзвуковая аэродинамика. М.: Машиностроение, 1975. 328 с.
- 23. Колесников А.Ф., Щелин В.С. Численный анализ точности моделирования гиперзвукового теплообмена в дозвуковых струях диссоциированного азота // Известия АН СССР. Механика жидкости и газа. 1990. № 2. С. 135–143.
- 24. Kolesnikov A.F. The Concept of Local Simulation for Stagnation Point Heat Transfer in Hypersonic Flows: Applications and Validation. AIAA 2000-2515, 2000.
- 25. Колесников А.Ф., Якушин М.И. Условия моделирования конвективного теплообмена тел с гиперзвуковыми потоками на индукционных плазмотронах // Теплофизика высоких температур. 1988. Т. 26. № 44. С. 742–750.
- 26. Сахаров В.И. Численное моделирование течений в индукционном плазмотроне и теплообмена в недорасширенных струях воздуха для условий экспериментов на ВГУ-4 (ИПМех РАН) // Физико-химическая кинетика в газовой динамике. 2007. Т. 5. 23с. http://chemphys.edu.ru/issues/2007-5/articles/38/

Статья поступила в редакцию 20 ноября 2015 г.