УДК 533.5

ПРИБЛИЖЕННЫЙ РАСЧЕТ ИСТЕЧЕНИЯ ГАЗА ИЗ ЗВУКОВОГО ИСТОЧНИКА В ВАКУУМ ПРИ РАЗЛИЧНЫХ ЧИСЛАХ КНУДСЕНА

Садин Д.В., Алексашов В.Ю., Варварский В.М.

Военно-космическая академия имени А.Ф. Можайского, г. Санкт-Петербург sadin@yandex.ru

Аннотация

Предложен приближенный метод расчета газодинамических параметров истечения газа из звукового источника в вакуум при различных числах Кнудсена в широком диапазоне углов расширения. Выполнено сравнение с результатами прямого моделирования методом Монте-Карло и аппроксимацией расчетных данных, полученных методом характеристик.

Ключевые слова: приближенный метод, истечение газа, вакуум

THE APPROXIMATE METHOD OF CALCULATION OF GAS OUTFLOW FROM A SONIC SOURCE INTO VACUUM AT VARIOUS KNUDSEN NUMBERS

The approximate method of calculation of gas-dynamic parameters of gas outflow from a sonic source into vacuum at various Knudsen numbers in a wide range of expansion angles is offered. Comparison with results of Direct Simulation Monte-Carlo method and approximation of the data calculated by a characteristics method is executed.

Key words: approximate method, gas outflow, vacuum

Введение

Развитие космической техники предъявляет повышенные требования к качеству и надежности конструкций. В частности от степени герметичности отсеков космических аппаратов зависит срок их активного существования на орбите. Сквозной дефект в герметизированной конструкции приводит к утечке рабочего тела (газа) из отсека и является причиной отказов в работе приборов и систем космического аппарата. Важное место в обеспечении требуемых норм герметичности элементов конструкций и выявления сквозных дефектов занимают испытания в вакуумной камере. В связи с этим представляется актуальным исследование закономерностей и количественная оценка параметров истечения газа в вакуум.

Задача струйного стационарного истечения газа из отверстия в вакуум является одной из базовых задач газовой динамики. Движение газа по каналу постоянного сечения с трением происходит под действием перепада давления с увеличением скорости до величины скорости звука на срезе канала. Дальнейшее истечение реального газа в вакуум через отверстие площадью A в стенке герметичного отсека имеет вначале, как правило, континуальный характер (локальные длины свободного пробега молекул l малы в сравнении с характерным размером течения, например \sqrt{A}), а затем на определенных стадиях расширения приобретает последовательно переходный и свободномолекулярный характер. Можно выделить два характерных режима истечения газа в вакуум [1]. Первый режим наблюдается при достаточно малых числах Кнудсена $\mathrm{Kn} = l_a / \sqrt{A} < 0.01$, где l_a — средняя длина свободного пробега молекул, определенная по параметрам на срезе канала. Для этого режима характерно наличие за срезом источника некоторой приосевой квазиконтинуальной области течения, в пределах которой сохраняется качественный вид распределений газодинамических параметров, характерных для случая $\mathrm{Kn} \to 0$. Продольные и поперечные размеры

этой области сокращаются с ростом числа Kn. Второй режим соответствует числам Kn > 0.1. Для этого режима характерны отсутствие за срезом источника квазиконтинуальной области и иной вид распределений параметров качественно аналогичный случаю $Kn \to \infty$. В диапазоне чисел 0.01 < Kn < 0.1 наблюдается переход от первого режима ко второму.

Для моделирования струйного стационарного истечения газа из отверстия в вакуум необходимо применение уравнения Больцмана и методов динамики разреженного газа. Точное аналитическое решение рассматриваемой задачи к настоящему времени не найдено. В [2] методом моментов с использованием эллипсоидальной функции распределения рассмотрены вопросы приближенного аналитического оценивания параметров на оси свободной струи одноатомного газа, истекающего в вакуум. В этой работе приведен обзор исследований, посвященных приближенному решению уравнения Больцмана методом моментов и асимптотическим методам анализа. Другой подход основан на соображениях теории подобия и аппроксимации в приближении Эйлера или Навье-Стокса результатов расчетов методом характеристик распределения газодинамических параметров в струе, истекающей из осесимметричных сопел в вакуум [3]. В [1] методом прямого моделирования Монте-Карло (ПММК) детально исследована газодинамика истечения в вакуум реального газа в широком диапазоне изменения характерных чисел Кп на примере неравновесного истечения газа в вакуум из стационарного звукового источника.

Целью настоящей работы является разработка приближенного оперативного метода расчета плотности и скоростного напора газа, истекающего из звукового источника в вакуум при различных числах Кнудсена в широком диапазоне углов расширения.

1 Приближенный метод расчета

Вначале рассмотрим стационарное истечение газа через отверстие в вакуум при p_0 / $p_a \to 0$ и больших числах Кнудсена Kn >>1; p_a , p_0 – давления газа в источнике и окружающей среде. Начало координат поместим в центр отверстия, ось X направим по потоку перпендикулярно к плоскости отверстия. На поверхности источника задана стационарная и постоянная по радиальной координате максвелловская функция распределения по скоростям (ξ_x, ξ_y, ξ_z) для частиц, вылетающих из источника $\xi_x > 0$:

$$f_a = \frac{n_a}{(2\pi RT_a)^{3/2}} \exp\left(-\frac{(\xi_x - U_a)^2 + \xi_y^2 + \xi_z^2}{2RT_a}\right),\tag{1}$$

Здесь n_a , T_a , U_a — равновесные значения концентрации, температуры и среднемассовой скорости газа на срезе источника, R — газовая постоянная. Для звукового источника среднемассовая скорость газа на срезе равна местной скорости звука $U_a/\sqrt{kRT_a}=1$ (k — отношение теплоемкостей).

Макроскопические газодинамические величины определяются осреднением по всем возможным скоростям молекул [4]. Например, для прямоугольного отверстия со сторонами 2a и 2b молекулы, поступающие из камеры в элементарный объем $d\Omega$ около произвольной точки (x,y,z) окружающей среды при условии $p_0/p_a \to 0$ могут иметь следующие значения составляющих скоростей

$$0 < \xi_x < \infty, \quad \xi_x \frac{z-a}{x} \le \xi_z \le \xi_x \frac{z+a}{x}, \quad \xi_x \frac{y-b}{x} \le \xi_y \le \xi_x \frac{y+b}{x}. \quad (2)$$

Интегрируя функцию распределения (1) в пространстве скоростей (2), можно получить осредненные газодинамические величины в безразмерном виде [5]:

$$\bar{\rho}_{a} = \frac{1}{4\sqrt{\pi}} \int_{0}^{\infty} \left[\operatorname{erf} \left(c_{x} \gamma_{+} \right) - \operatorname{erf} \left(c_{x} \gamma_{-} \right) \right] \cdot \left[\operatorname{erf} \left(c_{x} \zeta_{+} \right) - \operatorname{erf} \left(c_{x} \zeta_{-} \right) \right] \cdot e^{-(c_{x} - c_{a})^{2}} dc_{x},$$

$$\bar{\rho} u_{a} = \frac{1}{2} \int_{0}^{\infty} \left[\operatorname{erf} \left(c_{x} \gamma_{+} \right) - \operatorname{erf} \left(c_{x} \gamma_{-} \right) \right] \cdot \left[\operatorname{erf} \left(c_{x} \zeta_{+} \right) - \operatorname{erf} \left(c_{x} \zeta_{-} \right) \right] \cdot c_{x} e^{-(c_{x} - c_{a})^{2}} dc_{x},$$

$$\bar{\rho} v_{a} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \int_{c_{x} \zeta_{-}}^{\zeta_{+}} c_{y} e^{-c_{y}^{2}} dc_{y} \cdot \left[\operatorname{erf} \left(c_{x} \zeta_{+} \right) - \operatorname{erf} \left(c_{x} \zeta_{-} \right) \right] \cdot e^{-(c_{x} - c_{a})^{2}} dc_{x},$$

$$\bar{\rho} w_{a} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \int_{c_{x} \zeta_{-}}^{\zeta_{+}} c_{z} e^{-c_{z}^{2}} dc_{z} \cdot \left[\operatorname{erf} \left(c_{x} \gamma_{+} \right) - \operatorname{erf} \left(c_{x} \gamma_{-} \right) \right] \cdot e^{-(c_{x} - c_{a})^{2}} dc_{x},$$

$$\bar{\rho} u_{a}^{2} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \left[\operatorname{erf} \left(c_{x} \gamma_{+} \right) - \operatorname{erf} \left(c_{x} \gamma_{-} \right) \right] \cdot \left[\operatorname{erf} \left(c_{x} \zeta_{+} \right) - \operatorname{erf} \left(c_{x} \zeta_{-} \right) \right] \cdot c_{x}^{2} e^{-(c_{x} - c_{a})^{2}} dc_{x},$$

$$\bar{\rho} v_{a}^{2} = \frac{2}{\pi} \int_{0}^{\infty} \int_{c_{x} \gamma_{+}}^{\zeta_{+}} c_{y}^{2} e^{-c_{y}^{2}} dc_{y} \cdot \left[\operatorname{erf} \left(c_{x} \zeta_{+} \right) - \operatorname{erf} \left(c_{x} \zeta_{-} \right) \right] \cdot e^{-(c_{x} - c_{a})^{2}} dc_{x},$$

$$\bar{\rho} w_{a}^{2} = \frac{2}{\pi} \int_{0}^{\infty} \int_{c_{x} \zeta_{-}}^{\zeta_{+}} c_{y}^{2} e^{-c_{y}^{2}} dc_{y} \cdot \left[\operatorname{erf} \left(c_{x} \gamma_{+} \right) - \operatorname{erf} \left(c_{x} \gamma_{-} \right) \right] \cdot e^{-(c_{x} - c_{a})^{2}} dc_{x},$$

$$\bar{\rho} w_{a}^{2} = \frac{2}{\pi} \int_{0}^{\infty} \int_{c_{x} \zeta_{-}}^{\zeta_{+}} c_{y}^{2} e^{-c_{y}^{2}} dc_{y} \cdot \left[\operatorname{erf} \left(c_{x} \gamma_{+} \right) - \operatorname{erf} \left(c_{x} \gamma_{-} \right) \right] \cdot e^{-(c_{x} - c_{a})^{2}} dc_{x},$$

Здесь $\gamma_+ = (\overline{y} + \alpha)/\overline{x}$; $\gamma_- = (\overline{y} - \alpha)/\overline{x}$; $\zeta_+ = (\overline{z} + 1)/\overline{x}$; $\zeta_- = (\overline{z} - 1)/\overline{x}$; $\alpha = b/a$; $c_a = U_a/\sqrt{2RT_a}$; $c_i = \xi_i/\sqrt{2RT_a}$; i = x, y, z; erf $\beta = 2/\sqrt{\pi} \int_0^\beta e^{-\lambda^2} d\lambda$; $\overline{\rho}_a$ – безразмерная плот-

ность газа; $\overline{u}_a, \overline{v}_a, \overline{w}_a$ — безразмерные проекции скорости газа \boldsymbol{v} на оси декартовой системы координат.

Для уравнений (3) принята относительная система единиц измерения, в которой безразмерные величины имеют следующий вид:

$$\overline{i} = \frac{i}{a}, \quad \overline{\rho}_a = \frac{\rho}{\rho_a}, \quad \overline{\rho j}_a = \frac{\rho j}{\rho_a \sqrt{RT_a/2\pi}}, \quad \overline{j}_a = \frac{j}{\sqrt{8RT_a/\pi}}, \quad \overline{\rho j_a^2} = \frac{\rho j^2}{\rho_a RT_a/2}. \tag{4}$$

Здесь j = u, v, w.

Распределения безразмерных газодинамических параметров, вычисляемых по уравнениям (3), имеют асимптотический характер в дальнем поле при $\overline{x}>>1$. Действительно, α/\overline{x} , $1/\overline{x}<<1$, откуда $\gamma=\gamma_+=\gamma_-\to \overline{y}/\overline{x}$, $\zeta=\zeta_+=\zeta_-\to \overline{z}/\overline{x}$ и с учетом осевой симметрии молекулярного потока пространственные распределения макроскопических параметров газа полностью определяются функциями одной переменной $\overline{\lambda}=\lambda/\overline{x}$ (где $\lambda=\sqrt{\overline{y}^2+\overline{z}^2}$ — произвольная ось, перпендикулярная оси симметрии), а вдоль оси симметрии — числами. Предельные значения при истечении из отверстия произвольной формы площадью A при $c_a=0$ [5]:

$$4\pi \overline{\rho}_a \tilde{x}^2 = 4\pi \overline{\rho}_a \overline{u}_a^2 \tilde{x}^2 = \pi \overline{\rho u}_a \tilde{x}^2 = 2/3\pi \overline{\rho u_a^2} \tilde{x}^2 \rightarrow 1 \text{ при } \tilde{x} >> 1,$$
 (5)

где $\tilde{x} = x / \sqrt{A}$.

Влияние безразмерной среднемассовой скорости газа на срезе канала c_a на характер углового распределения на сфере с центром в точке ($\tilde{x}=0,\ \tilde{y}=0$) безразмерной плотности $\overline{\rho}_a$ в дальнем поле при $\overline{x}>>1$ показано на рис. 1 (здесь кривые соответствуют различным

значениям c_a : I-0.5; 2-0.6; 3-0.7; 4-0.8; 5-0.9; $6-\sqrt{k/2}=0.914$ при k=5/3). Изменение c_a качественно по-разному влияет на поле плотности в приосевой и периферийной областях течения. При $\theta < 50^\circ$ с увеличением c_a значение относительной плотности растет, в диапазоне углов $\theta > 50^\circ$ изменение c_a слабо влияет на поле относительной плотности.

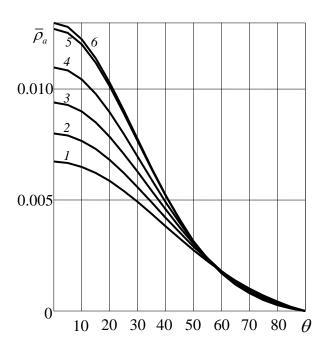


Рис. 1

Отправными моментами для построения приближенного метода расчета истечения газа из звукового источника в вакуум при различных числах Кнудсена являются следующие. Во-первых, с увеличением числа Кп от континуального до свободномолекулярного режима величина плотности потока разреженного газа в приосевой области растет, а при больших углах расширения стабилизируется [1]. Во-вторых, скорость газа на близком расстоянии от отверстия ($\tilde{x} > 10$) практически достигает значения предельной термодинамической скорости, а угловые или радиальные распределения газодинамических параметров потока имеют автомодельный асимптотический характер [3, 5].

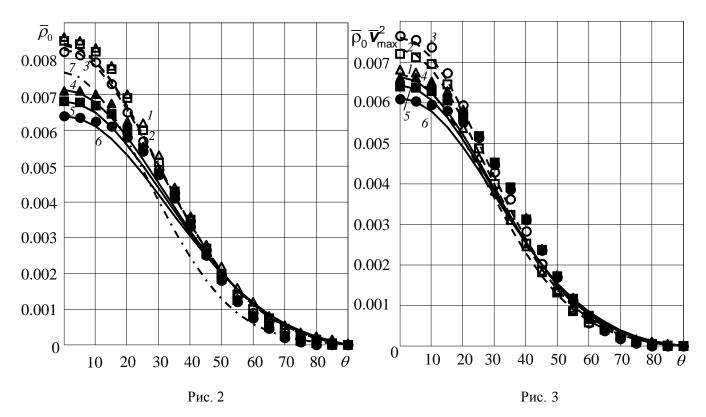
Используем известный в газовой динамике прием замены реального явления упрощенным описанием, позволяющим установить приемлемое количественное соответствие и отразить главные особенности исходного течения газа в широком диапазоне чисел ${\rm Kn}$. Введем в рассмотрение вместо исходной функции распределения по скоростям аппроксимирующую функцию со свободными параметрами n_e , T_e , U_e , зависящими от числа ${\rm Kn}$

$$f_e = \frac{n_e}{(2\pi RT_e)^{3/2}} \exp\left(-\frac{(\xi_x - U_e)^2 + \xi_y^2 + \xi_z^2}{2RT_e}\right).$$
 (6)

Приближенное решение для безразмерных газодинамических параметров, получается интегрированием (6) в пространстве скоростей (2) по соотношениям (3). Система единиц измерения в этом случае аналогична (4). А именно, вместо равновесных газодинамических параметров на срезе канала ρ_a , T_a , U_a используются свободные параметры ρ_e , T_e , U_e . При различных числах Кнудсена Кп свободные параметры подбираются до наилучшего соответствия приближенного решения расчетным данным истечения реального газа, полученных ПММК в дальнем поле течения (при $\tilde{x} >> 1$).

2 Результаты расчетов

Для сравнения используем результаты расчетов методом ПММК истечения в вакуум реального газа (гелия) из осесимметричного звукового источника в диапазоне изменения характерных чисел $10^{-4} \leq {\rm Kn} < \infty$ [1], а также зависимость для распределения плотности газа в дальнем поле струи, истекающей из сопла в вакуум [3]. На рис. 2, 3 представлены угловые распределения безразмерной плотности и скоростного напора $\bar{\rho}_0 = \rho/\rho_0$, $\bar{\rho}_0 \bar{v}_{\rm max}^2 = \rho v^2/(\rho_0 v_{\rm max}^2)$ на сфере с центром в точке $(\tilde{x}=0,\,\tilde{y}=0)$ и радиусом $\tilde{r}=10\sqrt{\pi}$ при различных числах ${\rm Kn}: 1-\infty;\,2-1;\,3-0.1;\,4-0.01;\,5-0.001;\,6-0.0001$ (кривые соответствуют приближенным расчетам по соотношениям (3) для функции распределения по скоростям (6); фигуры — результаты расчетов методом ПММК [1]; штрихпунктирная линия — расчетная зависимость [3]). Значения угла θ отсчитываются от оси x. Индекс 0 соответствует условным параметрам торможения, определенным в предположении изоэнтропичности расширения газа от заторможенного состояния до состояния на срезе источника. Значение предельной термодинамической скорости $v_{\rm max}$ определено по параметрам торможения для идеального совершенного газа.



Взаимосвязь решений в различных масштабах определяется следующими соотношениями:

$$\bar{\rho}_0 = \mathbf{K}_{\rho} \left(\frac{2}{k+1} \right)^{\frac{1}{k-1}} \bar{\rho}_e, \ \bar{v}_{\text{max}} = \sqrt{\mathbf{K}_T} \sqrt{\frac{8(k-1)}{\pi k (k+1)}} \bar{v}_e,$$
$$\bar{\rho}_0 \bar{\mathbf{v}}_{\text{max}}^2 = \mathbf{K}_{\rho} \ \mathbf{K}_T \frac{8(k-1)}{\pi k (k+1)} \left(\frac{2}{k+1} \right)^{\frac{1}{k-1}} \bar{\rho}_e \bar{v}_e^2.$$

Здесь $\mathbf{K}_{\rho} = \rho_{e} / \rho_{a}$, $\mathbf{K}_{T} = T_{e} / T_{a}$ — относительные свободные параметры.

Приближенный расчет истечения газа выполнен при значениях относительных свободных параметров K_{o} , K_{T} и $c_{e} = U_{e} / \sqrt{2RT_{e}}$, приведенных в табл. 1.

Таблица 1

Kn	$K_{ ho}$	K _T	C_e
∞	1.00	1.00	0.914
1	1.00	1.10	0.910
0.1	1.00	1.17	0.900
0.01	1.00	1.28	0.800
0.001	1.00	1.33	0.770
0.0001	1.00	1.39	0.730

Для достаточно больших чисел Кнудсена Кп $\to \infty$ результаты расчетов по соотношениям (3) для функции распределения по скоростям (6) стремятся к точному решению свободномолекулярного истечения газа из звукового источника в вакуум, а для конечных Кп – имеют приближенный характер. Расхождения Δ_1, Δ_2 результатов приближенных расчетов относительных плотности $\bar{\rho}'_0$ и скоростного напора $\bar{\rho}'_0 \bar{v}'_{\text{max}}^2$ с данными, полученными методом ПММК [1], приведены в табл. 2. Величины погрешностей определялись по формулам $\Delta_1 = |\bar{\rho}_0 - \bar{\rho}'_0| / \bar{\rho}_0|_{\lambda=0}$, $\Delta_2 = |\bar{\rho}_0 \bar{v}_{\text{max}}^2 - \bar{\rho}'_0 \bar{v}_{\text{max}}^2| / \bar{\rho}_0 \bar{v}_{\text{max}}^2|_{\lambda=0}$.

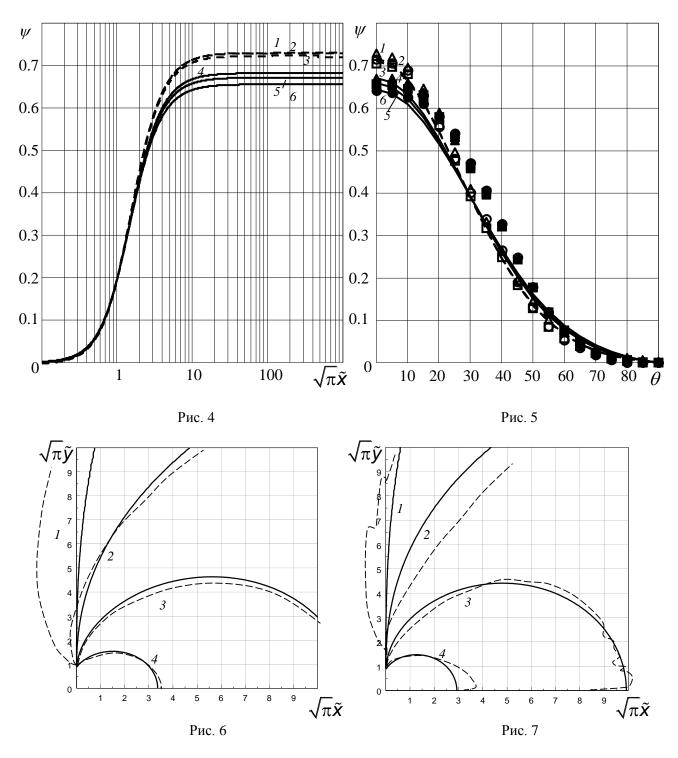
Таблица 2

Kn	Δ_1 , %	Δ_2 , %
0.1	2.7	3.5
0.01	6.3	11.0
0.001	7.3	11.7
0.0001	10.0	13.4

Рассмотрим асимптотические свойства (при $\tilde{x}>>1$) потока газа из звукового источника при различных числах Кнудсена. На рис. 4 приведены распределения функции $\psi = J \cdot \bar{\rho}_0 \overline{v}_{\text{max}}^2 \cdot \left(\sqrt{\pi} \tilde{x}\right)^2$ вдоль оси симметрии струи газа при числах Kn : $I - \infty$; 2 - 1; 3 - 0.1; 4 - 0.01; 5 - 0.001; 6 - 0.0001. Здесь величина J представляет собой отношение скоростного напора звукового источника в режиме сплошной среды к таковому в свободномолекулярном режиме:

$$J = \frac{\rho_a kRT_a}{\rho v^2 \Big|_{x=0}} = \frac{\pi k}{8 K_\rho K_T \overline{\rho}_e \overline{v}_e^2 \Big|_{x=0}}.$$

Из рис. 4 видно, что функция ψ стремится к предельному значению, которое практически достигается при $\sqrt{\pi}\tilde{x}>10$. Семейство кривых ψ , соответствующих различным числам Кнудсена (первый режим при Kn < 0.01: кривые 1-3; второй режим при Kn > 0.1: кривые 4-6) имеют различные асимптоты. На рис. 5 показаны угловые распределения функции ψ на сфере с центром в точке ($\tilde{x}=0$, $\tilde{y}=0$) и радиусом $\tilde{r}=10\sqrt{\pi}$ (обозначения аналогичны принятым на рис. 2 и 3). Кривые угловых распределений имеют автомодельный асимптотический характер и как в предыдущем случае группируются соответственно режимам истечения газа из звукового источника.



Приближенный метод (6), (3) предназначен для расчета газодинамических параметров в дальнем поле течения (при $\tilde{x} >> 1$). Вместе с тем, как показал анализ результатов расчетов, удовлетворительное согласие отмечается в широком диапазоне чисел Кнудсена во всем поле течения за исключением периферийной области. На рис. 6, 7 (при числах Кнудсена Кn = 0.1 и Kn = 0.0001 соответственно) представлены линии равных относительных плотностей газа $\bar{\rho}_0: I - 0.0001; 2 - 0.001; 3 - 0.01; 4 - 0.1$, образуемых при истечении из звукового источника. Штриховые линии относятся к расчету методом ПММК [1], а сплошные – приближенному расчету настоящей работы. При Kn >> 1 результаты расчета настоящей работы практически совпадают с численными данными ПММК во всем поле течения. Для второго режима (Kn \geq 0.1) распределение относительной плотности газа согласуется с ре-

зультатами ПММК за исключением периферийной области (рис. 6, Kn = 0.1). Однако в этой области обратный поток по отношению к потоку частиц на срезе источника мал и достигает максимальной величины при числах $Kn \approx 0.1$ примерно 0.65% [1]. С уменьшением числа Кнудсена расхождение расчетов по приближенной модели (6), (3) и результатов ПММК возрастает в диапазоне больших углов расширения газового потока (рис. 7, Kn = 0.0001).

Литература

- 1. Захаров В.В., Лукьянов Г.А. Моделирование неравновесного истечения газа в вакуум из стационарного источника // Математическое моделирование. 2001. Т. 13, № 6. С. 70–75.
- 2. Лазарев А.В., Застенкер Н.Н., Трубников Д.Н. Аналитические оценки параметров свободной струи одноатомного газа, истекающей в вакуум // Вестн. Моск. ун-та. Сер. 2. Химия. 2003. Т. 44. № 4. С. 238–242.
- 3. Герасимов Ю.И., Ярыгин В.Н. Истечение струй идеального и реальных газов из осесимметричных сопел. Вопросы подобия. 1. Истечение струй в вакуум // Физико-химическая кинетика в газовой динамике. 2012. Том 13. http:// www.chemphys.edu.ru/pdf/2012-07-13-001.pdf
- 4. Кошмаров Ю.А., Рыжов Ю.А. Прикладная динамика разреженного газа. М.: Машиностроение, 1977.
- 5. Садин Д.В., Алексашов В.Ю., Алексеев К.В., Варварский В.М., Лебедев Е.Л. Предельно автомодельное движение твердой частицы в свободномолекулярном потоке газа, истекающего из отверстия // Прикладная механика и техническая физика. 2012. Т. 53, № 6. с. 41–48.

Статья поступила в редакцию 18 февраля 2013 г.