УДК 539.1:621.373.826

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КИНЕТИЧЕСКИХ ПРОЦЕССОВ В ДВИЖУЩЕЙСЯ АРГОН-КСЕНОНОВОЙ ПЫЛЕВОЙ ПЛАЗМЕ, СОДЕРЖАЩЕЙ НАНОЧАСТИЦЫ УРАНА

Будник А.П., Сипачев А.В., Слюняев М.Н.

ГНЦ РФ, Физико-энергетический институт им. А.И. Лейпунского, г. Обнинск, 249033, пл. Бондаренко, 1 apbud@yandex.ru

Аннотация

Исследованы кинетические процессы в движущейся аргон-ксеноновой лазерно-активной газовой среде, содержащей наночастицы урана.

Разработаны модель и метод численного решения уравнений модели пространственновременной эволюции распределения концентрации наночастиц урана, инжектируемых в пылевой цилиндрический лазерно-активный элемент. Выполнены расчеты пространственно-временной эволюции распределения концентрации наночастиц урана при различных скоростях движения газа и размерах наночастиц урана.

Впервые исследованы усилительные свойства лазерно-активной пространственно-неоднородной ядерно-возбуждаемой содержащей наночастицы урана облучаемой нейтронами движущейся аргон-ксеноновой среды.

Ключевые слова: математическое моделирование, преобразование, ядерная, энергия, деление, уран, осколки, кинетические процессы, лазерное излучение, движущаяся плазма, наночастицы

MATHEMATICAL MODELING OF KINETIC PROCESSES IN MOVING ARGON-XENON DUSTY PLASMA CONTAINING URANIUM NANOPARTICLES

Budnik A.P., Sipachev A.V., Slyunyaev M.N.

Institute for Physics and Power Engineering named after A. I. Leypunsky, Russia, Obninsk, 249033

Kinetic processes in the moving argon-xenon laser-active gas environment containing uranium nanoparticles were investigated.

The model of the space-time evolution of the uranium nanoparticles injected into the cylindrical dust laser-active element concentration distribution and method of model's numerical solution were developed. The calculations of the space-time evolution of the uranium nanoparticles concentration distribution for different gas velocities and nanoparticles sizes were performed.

First investigated amplifying properties of moving laser-active spatially inhomogeneous nuclear-inducted containing uranium nanoparticles irradiated by neutrons argon-xenon environment.

Keywords: mathematical simulation of transformation of nuclear energy, laser radiation, nanoparticles.

1. Введение

Прошло около 40 лет с тех пор, когда было предложено применять распыленные в активной газовой среде мелкодисперсные урансодержащие частицы для преобразования ядерной энергии в энергию оптического излучения [1].

Применение мелкодисперсных урансодержащих частиц по сравнению с традиционно применяющимися методами гетерогенной ядерной накачки активных газовых сред может повысить долю энергии, выносимой осколками деления из конденсированной фазы в газо-

вую среду, в десять и более раз. Это создает предпосылки для повышения эффективности преобразования ядерной энергии в энергию оптического излучения.

Рассеяние и поглощение лазерного излучения активной средой, содержащей мелкодисперсные урансодержащие частицы, является существенным фактором препятствующим развитию генерации лазерного излучения в такой среде.

В последнее время было предложено использовать лазерно-активные газовые среды, облучаемые нейтронами и содержащие нанокластеры соединений урана [2-4].

Вначале расчетно-теоретические исследования показали, что возможно получить усиление лазерного излучения в ядерно-возбуждаемой аргон-ксеноновой пылевой газовой плазме [2–4].

Далее методами математического моделирования было показано, что при генерации лазерного излучения (ЛИ) в аргон-ксеноновой газовой среде, облучаемой нейтронами и содержащей наночастицы урана, эффективность преобразования кинетической энергии осколков деления урана в энергию ЛИ на порядок превышает эффективность преобразования этой энергии при гетерогенной накачке [7,8].

Это позволяет рассчитывать на создание способа и устройств с высокой эффективностью прямого преобразования кинетической энергии осколков деления в энергию когерентного оптического излучения.

Однако в исследованиях [7,8] рассматривалась только неподвижная однородная пылевая среда. Для того чтобы избежать осаждения наночастиц урана в газе представляется целесообразным продувать эту среду. Кроме того в процессе облучения при нагреве газа осколками деления возможно возникновение движения пылевой среды, нарушающая её однородность.

Таким образом, возникает необходимость исследования преобразования энергии осколков деления урана с учётом движения активной среды.

Настоящая работа посвящена математическому моделированию кинетических процессов в облучаемой нейтронами движущейся аргон-ксеноновой пылевой плазме, содержащей наночастицы урана.

Целью настоящей работы является определение влияния движения и пространственной неоднородности на процесс усиления ЛИ в лазерно-активном элементе (ЛАЭЛ).

2. Модель пространственно-временной эволюции концентрации наночастиц урана в пылевом ЛАЭЛ

Будем рассматривать вначале установившееся движение смеси инертных газов аргона и ксенона в ЛАЭЛ, который представляет собой вертикальную цилиндрическую трубу. При установившемся движении газа с дозвуковыми скоростями в начальный момент времени t=0, на входе в трубу начинает поступать газ, содержащий пылевые наночастицы урана (U). При этом отношение массы урановой пыли к массе газа мало. Таким образом, пыль при движении не вызывает сильных возмущений, поэтому для описания аксиально-симметричного движения газа, содержащего наночастицы урана, используем решение уравнения Навье — Стокса [9]. Можно считать давление газа в ЛАЭЛ приближенно постоянным.

Распределение скорости подачи газа, содержащего наночастицы урана, подчиняется параболическому закону [9]. Изменение концентрации урановой пыли в движущемся газе можно описать параболическим уравнением, учитывая как диффузию пылевых частиц, так и силы, действующие на частицы в потоке газа:

$$\frac{\partial n}{\partial t} = D\Delta n - \operatorname{div}(\vec{j}),\tag{1}$$

где n — концентрация; D — коэффициент диффузии наночастиц; Δ — оператор Лапласа; \vec{j} — плотность потока пылевых частиц, равная

$$\vec{j} = \vec{v}_p n, \qquad (2)$$

где \vec{v}_p — скорость движения пылевых частиц, которая, в общем случае, может быть отличной от скорости движения аргон-ксеноновой газовой среды.

В цилиндрических координатах уравнение (1) имеет вид

$$\frac{\partial n}{\partial t} = D \left(\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} n + \frac{\partial^2}{\partial z^2} n \right) - \frac{1}{r} \frac{\partial}{\partial r} r j_r - \frac{\partial}{\partial z} j_z.$$
 (3)

где z, r – цилиндрические (осевая и радиальная) координаты.

В идеальных газах, где концентрация нейтральных частиц (атомов, молекул) N удовлетворяет условию:

$$N \square 1/a_0^3$$
, (4)

 $(a_0 \approx 10^{-8} \div 10^{-7} \text{ см} - \text{характерный радиус действия межмолекулярных сил}), диффузия определяется парными соударениями пробной частицы с атомами или молекулами. Поэтому вплоть до очень высоких давлений коэффициент диффузии обратно пропорционален концентрации частиц газа и выражается через характеристику парного соударения пробной частицы и частиц газа – диффузионное сечение рассеяния <math>\sigma^*$ [10].

Согласно элементарной кинетической теории газов коэффициента диффузии малой примеси в газе определяется соотношением [10]:

$$D = \langle v \rangle \lambda / 3,\tag{5}$$

где $v = \sqrt{2kT/\mu}$ — средняя относительная скорость соударения частиц примеси и частиц газа, μ — приведенная масса сталкивающихся частиц, T — температура газа, $\lambda = 1/N\sigma^*$ — длина свободного пробега пробных частиц в газе.

Коэффициент диффузии наночастиц D можно определить, используя аппроксимацию, предложенную Б.М. Смирновым [11]:

$$D = \frac{kT(1+3.12\text{Kn})}{6\pi r_p \eta},\tag{6}$$

где k — постоянная Больцмана; T — температура; Кп — число Кнудсена; r_p — радиус наночастицы урана; η — динамическая вязкость газа.

Соотношение (5) является точным, если σ^* не зависит от энергии сталкивающихся частиц. В противном случае понятие длины пробега теряет определенность и указанное соотношение справедливо для эффективных величин. Принято приводить значения коэффициента диффузии не при постоянной плотности газа, а при постоянном давлении. В этом случае с учётом уравнения газового состояния p = NkT получаем зависимость

$$D = D_0 \left(T/273 \right)^{3/2},\tag{7}$$

где D_0 – коэффициент диффузии в нормальных условиях. Это соотношение справедливо при тех же условиях, что и соотношение (5).

Исходя из (5), (7) и взяв, согласно [10], табличное значение для коэффициента диффузии в нормальных условиях D_0 , можно рассчитать значение длины пробега пробных частиц в газе λ и, как следствие, оценить поправку (1+3.12Kn) в (6).

Пусть аргон-ксеноновая газовая смесь движется вертикально вверх. Тогда на пылевые частицы в ЛАЭЛ действуют две силы. Первая — сила тяжести (F_T), направленная вниз, вторая — сила Стокса (F_C), направленная противоположно силе тяжести по скорости потока. Эти силы соответственно равны:

$$F_T = m_n g \,, \tag{8}$$

$$F_C = 6\pi r_p \eta \left[v(r) - v_p(r) \right], \tag{9}$$

где m_p – масса частицы, v(r) – скорость потока газа, $v_p(r)$ – скорость частицы.

Из равенств (8) и (9) можно найти среднюю скорость установившегося направленного движения наночастиц в потоке в зависимости от расстояния от оси цилиндра до его внутренней стенки:

$$m_p g = 6\pi r_p \eta \Big[v(r) - v_p(r) \Big], \tag{10}$$

$$v_p(r) = v(r) - \frac{m_p g}{6\pi r_p \eta}.$$
(11)

В дальнейшем считаем, что скорость \vec{v}_p устанавливается достаточно быстро.

Выразив массу наночастицы через радиус и плотность получим

$$v_p(r) = v(r) - \frac{2\rho_p r_p^2 g}{9\eta},$$
 (12)

где ρ_p – плотность частицы.

Скорость, с которой газ подаётся на вход в ЛАЭЛ, неравномерна относительно поперечного сечения трубы. Для описания скорости использовано параболическое распределение [9] вида

$$v = \frac{v_{\text{max}}}{R^2} \left(R^2 - r^2 \right), \tag{13}$$

где v — текущая скорость в радиусе r; r — текущий радиус; R — внутренний радиус трубы; $v_{\rm max}$ — максимальная скорость газа (на оси).

Учитывая (2) и (13), преобразуем уравнение (3) к итоговому виду

$$\frac{\partial n}{\partial t} = D \left(\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} n + \frac{\partial^2}{\partial z^2} n \right) - v_{\text{max}} \left(1 - \frac{r^2}{R^2} \right) \frac{\partial}{\partial z} n . \tag{14}$$

В начальный момент времени концентрация пылевых частиц в ЛАЭЛ равна нулю:

$$n(z,r,t)|_{t=0}=0, (15)$$

Процесс симметричен относительно оси ЛАЭЛ.

$$\frac{\partial n}{\partial r} = 0$$
, при $r = 0$. (16)

На стенке прилипание частиц:

$$n(z,r,t) = 0$$
, при $r = R$. (17)

На входе в ЛАЭЛ подаются пылевые частицы заданной концентрации N_0 :

$$n(0,r,t) = N_0$$
, при $r < R$. (18)

Выход газа из ЛАЭЛ свободный.

3. Метод решения

Для решения уравнения (14) использовался метод конечных разностей. Это уравнение аппроксимировалось пятиточечной конечно-разностной схемой, аналогичной разработанной и подробно описанной в [12].

Для построения конечно-разностной схемы будем использовать совмещённую сетку с постоянными шагами h_z,h_ρ,h_t , соответственно по оси z, по радиусу ρ и по времени t, согласно [12]

$$z_m = (m+0.5)h_z$$
, где $0 \le m \le NZ < z_{\text{max}}/h_z$, (19)

$$r_j = (j+0.5)h_r$$
, где $0 \le j \le NR < r_{\text{max}}/h_r$, (20)

$$t_n = nh_t$$
, где $0 \le n \le NT < t_{\text{max}}/h_t$, (21)

где z_{\max} , r_{\max} , t_{\max} — параметры модели, определяющие правые граничные значения осевой и радиальной переменных и времени.

Для решения уравнения конечно-разностной схемы была разработана программа, реализованная средствами языка программирования Visual C++ в среде Microsoft Visual Studio 2010 версии 10.0.30319.1 RTMRel.

Отличительной особенностью программы является её гибкость, позволяющая легко менять структуру сетки, параметры точек и алгоритм расчётов. Эта особенность достигается за счёт способа построения сетки. Каждый её узел содержит информацию о соседних узлах и другие параметры позволяющие отказаться от необходимости постоянного пересчёта данных и индексов узлов сетки. Это позволило увеличить скорость работы программы и уменьшить вероятность ошибок при создании алгоритма.

4. Результаты моделирования пространственно-временной эволюции концентрации наночастиц урана в пылевом ЛАЭЛ

Результат моделирования можно представить в виде изолиний, построенных на основе значений концентраций частиц урана в узлах сетки.

На рис.1–5 представлены типичные результаты изменения концентрации наночастиц урана в ЛАЭЛ. Результаты расчётов получены для частиц с радиусом $r_p = 5$ нм при давлении газа p = 0.5 атм и следующих значениях переменных: $z_{\rm max} = 1$ м, $r_{\rm max} = R = 0.1$ м, $v_{\rm max} = 0.1$ м/с, $N_0 = 10^{18}$ м⁻³.

Установившееся состояние можно наблюдать, начиная примерно с 50 секунды.

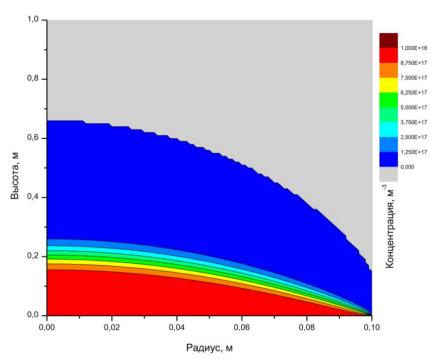


Рис. 1. Распределение наночастиц урана в ЛАЭЛ в момент времени t = 3 с

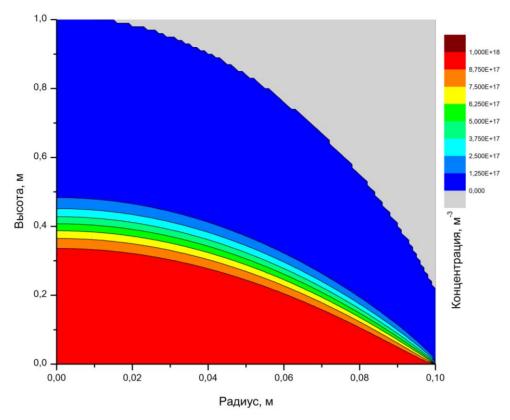


Рис. 2. Распределение наночастиц урана в ЛАЭЛ в момент времени t = 5 с

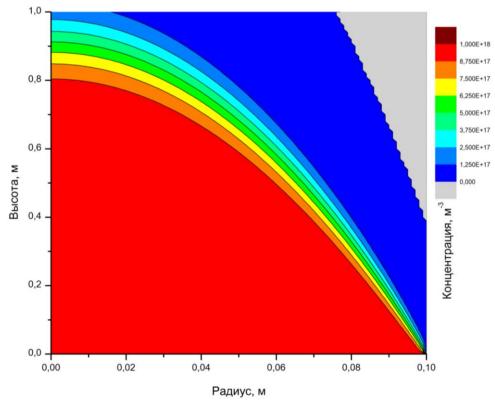


Рис. 3. Распределение наночастиц урана в ЛАЭЛ в момент времени t = 10 с

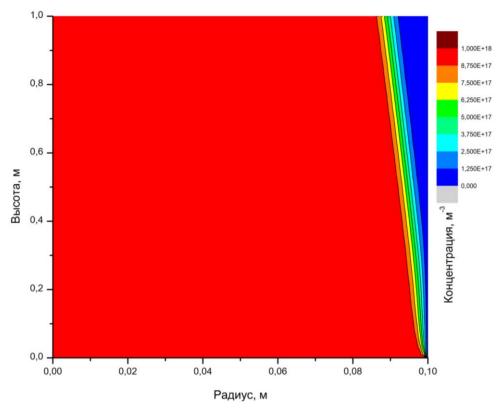


Рис. 4. Распределение наночастиц урана в ЛАЭЛ в момент времени t = 50 с

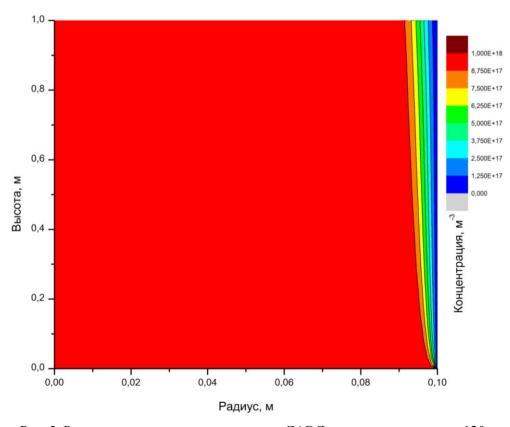


Рис. 5. Распределение наночастиц урана в ЛАЭЛ в момент времени t = 120 с

5. Модель кинетических процессов в возбуждаемой осколками деления пылевой аргон-ксеноновой лазерно-активной среде

Модель кинетических процессов в возбуждаемой осколками деления аргон-ксеноновой лазерно-активной среде с монодисперсной пылевой компонентой была разработана в работах [2, 3]. Эта модель использовалась в настоящей работе для исследования кинетических процессов в плазме, создаваемой осколками деления урана, индуцированного нейтронами.

В кинетической модели аргон-ксеноновой среды с монодисперсной пылевой компонентой в газовой компоненте учитывались атомарные (Ar^+ , Xe^+) и гомоядерные молекулярные ионы аргона и ксенона (Ar_2^+ , Xe_2^+), гетероядерный ион $ArXe^+$ и молекула ArXe, атомы аргона и ксенона в возбужденных состояниях, а также эксимеры аргона и ксенона (рис. 6).

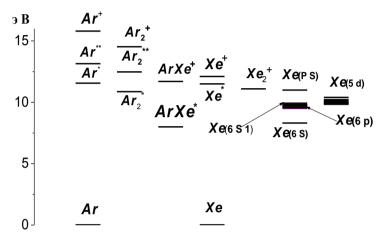


Рис. 6. Энергетическая диаграмма рассматриваемых в кинетической модели состояний

Для возбужденного атома ксенона рассматриваются отдельно уровни 6s, восемь 5d подуровней и шесть 6p подуровней, а подуровни 7p и 7s состояний объединялись в единый уровень (рис.7). Все остальные состояния ксенона объединены в одно состояние, обозначенное Xe*.

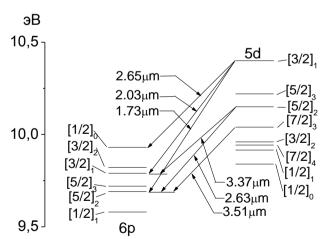


Рис. 7. Энергетическая диаграмма рассматриваемых в кинетической модели состояний атома ксенона, на переходах, между которыми возможно получить генерацию лазерного излучения

Последовательность основных кинетических процессов, ведущих к созданию в аргон-ксеноновой среде инверсной заселенности следующая. Осколки деления, взаимодействуя с аргон-ксеноновой средой, теряют энергию главным образом на образование атомарных ионов и возбужденных атомов аргона. Далее в столкновениях атомарных ионов Ar^+ и возбужденных атомов аргона с атомами аргона и ксенона образуются как возбужденные атомы ксе-

нона, так и атомарные ионы ксенона Xe^+ , а также молекулярные гомоядерные Ar_2^+ , Xe_2^+ и гетероядерные ионы $ArXe^+$.

Заселение верхних возбужденных состояний атома ксенона (обозначенных как PS) происходит в результате диссоциативной рекомбинации молекулярных ионов ArXe⁺, Xe⁺₂. В дальнейшем в результате столкновений с атомами аргона происходит заселение верхнего лазерного уровня для переходов с длиной волны 1,73 мкм, 2,03 мкм и 2,65 мкм. Расселение лазерных уровней идет по нескольким каналам — за счет гашения возбуждения в столкновениях с электронами плазмы и радиационным путем в результате вынужденного и спонтанного излучения. Эти процессы приводят к заселению нижних лазерных уровней, которые тушатся в столкновениях с атомами аргона и электронами, заселяя при этом более низколежащие возбужденные состояния атомов ксенона.

В модели с монодисперсной пылевой компонентой процессы взаимодействия электронов и ионов с заряженными наночастицами описывались следующими "плазмохимическими" реакциями:

$$e+D \rightarrow D(-)$$
, (22)

$$e+D(n-) \rightarrow D((n+1)-)$$
, (23)

$$I(+) + D(n-) \rightarrow D((n-1)-),$$
 (24)

$$I(+) + D \rightarrow D(+). \tag{25}$$

Здесь введены обозначения: e — соответственно электрон; D, D(+), D(n-) — соответственно электрически нейтральный, положительно и отрицательно заряженные наночастицы радиусом 5 нм; n — заряд наночастиц в единицах заряда электрона; I(+) — любой положительно заряженный атомарный или молекулярный ион газовой смеси.

Всего в модели рассматривалось 57 компонент и учитывалось 434 реакций в аргонксеноновой среде.

6. Результаты расчётов коэффициента усиления ЛИ средой

Важной характеристикой лазерно-активной среды является линейный коэффициент усиления ЛИ. Используя модель кинетических процессов в аргон-ксеноновой плазме, содержащей наночастицы урана, можно определить ненасыщенные линейный коэффициент усиления ЛИ.

В табл. 1 представлены результаты расчётов квазистационарных значений линейного коэффициента усиления ЛИ α на длине волны 1.73 мкм в зависимости от концентрации наночастиц урана в лазерно-активной аргон-ксеноновой газовой среде при удельной мощности энерговклада 240 Вт/см³, при давлении газа 0.5 атм.

$N, 10^{12} \text{ cm}^{-3}$	α , 10^{-3} cm ⁻¹	β , 10^{-3} cm ⁻¹
1.0	22.0	2.125
0.5	13.8	1.062
0.25	8.2	0.265
0.125	4.8	0.033

Коэффициент усиления ЛИ газовой среды рассчитан в пренебрежении ослаблением излучения наночастицами. Там же представлены рассчитанные данные о зависимости коэффициента ослабления β ЛИ наночастицами урана (радиус частиц – 5 нм) от их концентрации для длины волны 1.73 мкм [2, 3, 5, 6].

Определим полный коэффициент усиления ЛИ аргон-ксеноновой газовой средой, содержащей наночастицы урана

$$\mu = \alpha - \beta \,. \tag{26}$$

Результат расчётов приведен в табл. 2.

Таблица 2
Полный коэффициент усиления ЛИ средой в зависимости от концентрации наночастиц N

$N,10^{12}\mathrm{cm}^{-3}$	μ , 10^{-3} cm $^{-1}$
1.0	19.88
0.5	12.74
0.25	7.94
0.125	4.77

На рис.8 представлена зависимость полного коэффициента усиления ЛИ средой μ от концентрации N для длины волны 1.73 мкм. Также для удобства сравнения добавлены графики для коэффициента усиления ЛИ α и коэффициента ослабления ЛИ β газовой средой.

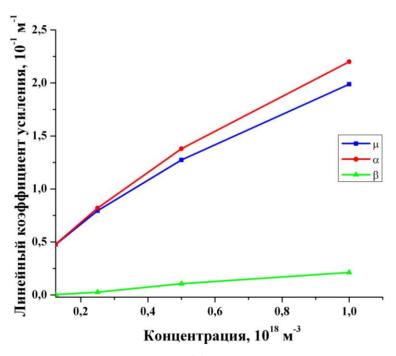


Рис. 8. Зависимость полного линейного коэффициента усиления ЛИ μ аргон-ксеноновой газовой средой, содержащей наночастицы урана, от концентрации наночастиц урана N

Изменение интенсивности I ЛИ, распространяющегося параллельно оси цилиндра, может быть описано следующим уравнением:

$$\frac{\mathrm{d}I}{\mathrm{d}z} = \mu(z, r, t)I. \tag{27}$$

Определим коэффициент усиления интенсивности ЛИ газовой средой следующим образом:

$$K(z,r,t) = I/I_0, (28)$$

где I_0 – интенсивность излучения на входе в лазерно-активную среду.

Тогда K(z,r,t) можно представить в виде

$$K(z,r,t) = \exp\left[\int_{0}^{z} \mu(z_{1},r,t) dz_{1}\right]. \tag{29}$$

Ввиду большой проникающей способности нейтронного излучения и малой длины пробега осколков деления, которые теряют большую часть энергии в начале пробега, можно считать, что плотность энерговыделения в аргон-ксеноновой газовой среде, содержащей наночастицы урана пропорциональна концентрации частиц урана.

Используя данные о зависимости от времени распределения концентрации частиц урана в ЛАЭЛ, можно рассчитать временные зависимости коэффициента усиления интенсивности ЛИ K(z,r,t).

Для расчёта K(z,r,t) была создана программа, в основу которой лёг алгоритм линейной интерполяции, позволяющий посчитать полный линейный коэффициент усиления среды μ , во всех узлах сетки, на основе значений, приведённых в таблице 2 и рассчитанных концентраций наночастиц урана. Промежуточные значения получаются с помощью линейной интерполяции, точность которой достаточна в силу незначительного изменения этих значений на интересующем нас участке.

Результаты расчётов радиальной зависимости $K(z_{\text{max}},r,t)$ на выходе ЛИ из ЛАЭЛ в различные моменты времени для частиц с радиусом 5 нм при давлении 0.5 атм представлены в виде графика на рис. 9. При расчётах полагалось, что максимальная удельная мощность энерговклада осколков деления, равная 240 Вт/см³, достигается при концентрации 10^{12} см⁻³.

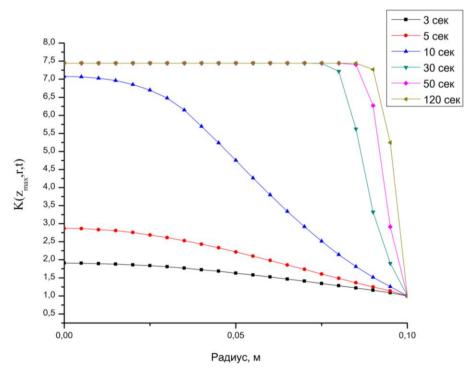


Рис. 9. Радиальная зависимость коэффициента усиления интенсивности ЛИ в различные моменты времени

Из представленных результатов расчётов коэффициента усиления интенсивности ЛИ следует, что лазерно-активная среда длиной в 1 м обеспечивает большое усиление ЛИ.

Это позволяет использовать такую среду не только в лазере с ядерной накачкой, но и в режиме оптического квантового усилителя с ядерной накачкой.

Заключение

Разработана двумерная продольно-неоднородная аксиально-симметричная модель для описания пространственно-временной эволюции концентрации наночастиц урана в пылевом ЛАЭЛ. Также разработан конечно-разностный метод численного решения модели, который основывается на пятиточечной разностной схеме.

При математическом моделировании кинетических процессов в облучаемой нейтронами движущейся аргон-ксеноновой пылевой плазме, содержащей наночастицы урана, рассчитаны квазистационарные значения линейного коэффициента усиления ЛИ на длине волны 1.73 мкм. Одновременно рассчитывались зависимости линейных коэффициентов ослабления ЛИ наночастицами урана (радиус частиц 5 нм) от концентрации наночастиц.

Впервые исследованы усилительные свойства лазерно-активной облучаемой нейтронами пространственно-неоднородной содержащей наночастицы урана движущейся аргонксеноновой среды.

Литература

- 1. Miley G.H., McArhur D., DeYuong R., Prelas M. Fission reactor pumped laser: History and prospects: Proceedings Conferences 50 Years with nuclear fission. Washington 25-28 April -P. 333-342 Pub. American Nuclear Society. -1989.
- 2. А. П. Будник, В.А. Косарев, В.П. Лунев. Математическое моделирование генерационных характеристик активных газовых сред, содержащих нанокластеры соединений урана // Труды IV международной конференции «Физика лазеров с ядерной накачкой и импульсные реакторы» (ЛЯН-ИР-2007) в 2-х томах. ГНЦ РФ ФЭИ, Обнинск, 2009, т. 1. С. 177–184.
- 3. Будник А.П., Косарев В.А., Лунев В.П. Математическое моделирование кинетических процессов в газовой аргон-ксеноновой плазме, содержащей нанокластеры химических соединений урана // Препринт ФЭИ 3141. Обнинск. 2008. 23 с.
- 4. Алексеева И.В., Будник А.П., Сипачев А.В. Неравновесная радиационная плазмодинамика в газовых активных средах оптических квантовых усилителей с ядерной накачкой // Физико-химическая кинетика в газовой динамике. 2010. Т.9. http://chemphys.edu.ru/media/files/2010-01-12-009.pdf
- 5. Budnik A.P., Deputatova L. V., Fortov V. E., Lunev V. P., Vladimirov V. I.. Simulation of kinetic processes, optical and neutron properties of the nuclear-excited uranium dusty plasma of the argon-xenon gas mixture. Ukrainian Journal of Physics. 56 (2012).N12. Pp.1260–1264
- 6. Будник А.П., Лунев В.П. Расчётно-теоретические исследования методом Монте-Карло оптических и нейтронно-физических свойств аргон-ксеноновой газовой среды, содержащей нанокластеры урана и его химических соединений // Физико-химическая кинетика в газовой динамике. 2011. Т.11. http://chemphys.edu.ru/pdf/2011-02-01-006.pdf
- 7. Будник А.П., Сипачев А.В. Математическое моделирование кинетических процессов в аргонксеноновой ядерно-возбуждаемой плазме, содержащей нанокластеры урана // Физикохимическая кинетика в газовой динамике. 2012. Т.13. Вып.3. http://chemphys.edu.ru/pdf/2012-11-20-003.pdf
- 8. Будник А.П., Сипачев А.В. Математическое моделирование кинетических процессов при генерации лазерного излучения в аргон-ксеноновой активной газовой среде, содержащей наночастицы урана // Физико-химическая кинетика в газовой динамике. 2013. Т. 14. Вып.2. http://chemphys.edu.ru/pdf/2013-04-29-004.pdf
- 9. Савельев И.В. Механика, молекулярная физика // Курс общей физики. М.: Наука, главная редакция физико-математической литературы, 1987. Т. 1. 432 с.
- 10. Физические величины // Справочник. Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- 11. Смирнов Б.М. Аэрозоли в газе и плазме. М.: ИВТАН, 1990. 104 с.
- 12. Алексеева И.В., Будник А.П. Модель пространственно-временной эволюции треков многозарядных ионов с учётом неоднородности вдоль оси трека. 1. Постановка задачи. Метод решения // Препринт ФЭИ. − 2001: №2922. − 16 с.

Статья поступила в редакцию 21 ноября 2014 г.