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Abstract

We study non-equilibrium effects caused by dissociation and other chemical re-
actions in gas mixtures. For that, we employ a general algorithm for deriving a
uniform asymptotic solution of the kinetic equation for spatially inhomogeneous
reactive gas mixtures developed earlier by the authors. We show that chemical re-
actions lead to quasi-stationary vibrational distribution function that differs from
the quasi-equilibrium one. Under such conditions, the approach based on introduc-
tion of reaction rate constants shall be revised. We obtained expressions for reaction
rates of pure unimolecular processes that have a dependence on pressure in good
agreement with the theory of unimolecular reactions. Considering both unimolecu-
lar and collisional mechanisms of elementary reactions leads to new dependencies
of reaction rates on gas pressure. Parallel reactions are considered (when one mole-
cule reacts with several others), and a strong correlation between these reactions
is demonstrated in the non-equilibrium case. This correlation can be manifested as
blocking of one reaction by another. It violates the mass action law.

ВЛИЯНИЕ КОЛЕБАТЕЛЬНОЙ НЕРАВНОВЕСНОСТИ НА
СКОРОСТИ ХИМИЧЕСКИХ РЕАКЦИЙ

Исследуются неравновесные эффекты, обусловленные диссоциацией и други-
ми химическими реакциями в газовых смесях. Для этого используется общий
алгоритм построения асимптотического решения кинетического уравнения для
пространственно неоднородных реагирующих газовых смесей, разработанный
авторами ранее. Показано, что химические реакции приводят к квазистационар-
ному колебательному распределению, отличающемуся от квазиравновесного. В
этих условиях подход, основанный на введении понятия константы скорости
реакции нуждается в пересмотре. Получены выражения для скоростей реакций
чисто мономолекулярных процессов, которые имеют зависимость от давления,
хорошо согласующуюся с теорией мономолекулярных реакций. Учет как моно-
молекулярного, так и столкновительного механизма элементарных реакций ве-
дет к новой зависимости скоростей реакций от давления. Рассмотрены парал-
лельные реакции (когда одна молекула реагирует с несколькими другими мо-
лекулами), и показана сильная корреляция между этими реакциями в нерав-
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новесном случае. Эта корреляция может проявляться как блокирование одной
реакции другой. Это явление ведет к нарушению закона действующих масс.
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effects
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1 Introduction.

In our previous paper [1] we developed a new general approach for deriving gas-
dynamic equations from kinetic ones for reactive gases. This approach is based on
elimination of fast variables and reduction of the system description. The fast vari-
ables are the parts of distribution functions. Their behavior is governed by the equa-
tions derived from generalized Boltzmann equations by change of variables. The
reduced description is done in terms of slow variables for which the gas-dynamic
equations are derived. The resulting equations contain extra terms in comparison
with traditional ones. Determination of slow variables is based on the concept of
so called approximate summational invariants (that include the exact ones). They
determine a complete set of slow variables. Here, using this approach, we are going
to describe some non-equilibrium effects in reactive gases. The non-equilibrium ef-
fects are the distinctions of new gas-dynamic equations from those obtained with
quasi-equilibrium distribution functions. We define the quasi-equilibrium distribu-
tion functions as functions that maximize the entropy density of the system for fixed
gas-dynamic variables.

Analysis of the gas-dynamic equations obtained in [1] shows that all non-equilibrium
effects can be subdivided into three groups. The first group are the effects caused by
the perturbation of quasi-equilibrium distribution function by the physical-chemical
processes. Only these effects remain in the spatially homogeneous case. The sec-
ond group consists of the terms proportional to the velocity divergence that arise
in the expressions for the corresponding reaction rates. These effects are caused by
expansion and compression of the gas. The first and second groups are represented
in the zero order approximation. In the first order approximation the third group of
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non-equilibrium effects appears. It consists of terms in the expressions for the reac-
tion rates, that are proportional to the scalar bilinear combinations of gas-dynamic
variables gradients. Here we consider only the effects of the first group. Due to the
additive contribution of all these terms to the gas-dynamic equations, they can be
studied separately. The effects from the second and third group have been estimated
in [2,3,4].

In this paper we study the non-equilibrium effects in chemical reactions induced
by non-equilibrium vibrational distributions caused by the chemical reactions them-
selves. These effects are of the highest importance because they significantly influence
the reaction rates, up to their vanishing. In Section 2 we calculate the non-equi-
librium dissociation rate for a small admixture of dissociating molecules in noble
gas mixture in a one-temperature regime. It was previously calculated in the theory
of unimolecular reactions [5,6], but only for unimolecular dissociation mechanism.
Unlike the previous treatments, both unimolecular and collisional mechanisms of
dissociation are considered here. This leads to new results concerning the depen-
dence of the dissociation rate on the gas mixture pressure. Generalization of such
system description for the spatially inhomogeneous case is discussed. A case of ar-
bitrary concentration of the dissociating gas is also studied. An iterative procedure
for the distribution function and reaction rates calculation is proposed. In section 3
the peculiarities of the exchange reactions’ pressure behavior is briefly considered.
In Section 4 more complex system with two parallel chemical reactions is analyzed.
The effect of interdependency of different reactions in the non-equilibrium case is
shown. It means the violation of the mass action law. This makes it very difficult to
obtain reaction rates from experimental data. Appendix A contains expressions for
the collision integrals. It is shown that the kinetic equation with these integrals sat-
isfies the H-theorem. In Appendix B equations for vibrational population densities
are derived.

2 Thermal Dissociation Reactions.

2.1 State-of-the-art.

Let us consider the generalized Boltzmann equation

∂Fα

∂t
+ vα · ∇Fα =

1

ε
Iα(F ). (1)

Here Fα, Iα and vα is the distribution function, the collisional integral and the
velocity of the molecule of sort α, ε is the ratio of characteristic time of inelastic
process to characteristic gas-dynamic time. Slow variables are introduced as

Γi = 〈ψi, F 〉 , 〈ψ, ϕ〉 =
∑
α

∑
kα

∫
dvαψα (vα, kα)ϕα (vα, kα) . (2)
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Here kα are quantum numbers of species α and ψi is the set of approximate sum-
mational invariants (ASI) that is defined by the condition

〈ψi, I (F )〉 ≤ O (ε) . (3)

As a result the distribution function can be treated as a function of t, r and Γi and

time and spatial derivations should be rewritten as
∂Fα

∂t
→ ∂Fα

∂t
+
∑

i

∂Fα

∂Γi

∂Γi

∂t
and

∇Fα → ∇Fα +
∑

i

∂Fα

∂Γi
∇Γi respectively. Multiplying eq. (1) by ψi and calculating

the scalar products we obtain the equations for Γi. Substituting them into the last
equation we get

∂Fα

∂t
=

1

ε

(
Iα(F ) −

M∑
i=1

∂Fα

∂Γi
〈ψi, I (F )〉

)
−v·∇Fα+

M∑
i=1

∂Fα

∂Γi
(∇ · 〈vψi, F 〉 − v · ∇Γi) .

Here and further all time and spatial derivations correspond to the direct time
and spatial co-ordinate dependence of the corresponding functions. This equation
coincides with the commonly used only when all ψi are exact summational invariants
(ESI). It shows the main difference between the systems that are described by slow
variables originated from exact and approximate summational invariants. Then it is
convenient to represent Fα = F 0

α({Γi}) + Φα, where the first item depends only on
slow variables.

Following the formalism of our previous paper [1], we choose F 0
α = F (qe)

α (Γ1, . . . ,ΓM),
where quasi-equilibrium distribution functions F (qe)

α maximize the entropy density
for a fixed set of slow variables: F (qe)

α = exp
(
ln sα (kα) −∑M

i=1 γiψiα (vα, kα)
)
. Here

sα(kα) are corresponding statistical weights, γi are determined by the relations Γi =〈
ψi, F (qe)

〉
and Φα should satisfy relations 〈ψi,Φ〉 = 0. Equations for slow variables

then have the form

∂Γi

∂t
=

1

ε

〈
ψi, I

(
F (qe) + Φ

)〉
−∇·

〈
vψi,

(
F (qe) + Φ

)〉
. (4)

Further we follow the methodology of section 4 presented in [1], where a simplified
case is considered with a "week" non-equilibrium situation when Φα function is
assumed to be of the order of ε. For the one-temperature flow F (qe)

α is a Maxwell-
Boltzmann distribution function. It should be mentioned that the collisional integral
Iα(F ) calculated with F (qe)

α does not vanish since this distribution contains not only
exact summational invariants.

In the dimensionless form, the equation for the lowest order correction for the dis-
tribution function, Φ(0), (see Eq (22) in paper [1]) can be written as

J ′
F (qe)(F (qe))Φ(0) = −1

ε
JF (qe)

(
F (qe)

)
+

M∑
i=1

∂F (qe)

∂Γi

[
v · ∇Γi −∇ ·

〈
vψi, F

(qe)
〉]
. (5)

Here summation over i denotes the summation over all slow variables (2), J ′
F (G) is
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the modified collision operator JF (G) linearized over G, and

JF (qe)(G) = I(G) −
M∑
i=1

∂F (qe)

∂Γi
〈ψi, I(G)〉. (6)

As it was discussed in [1], from the structure of the equation (5) it follows that Φ(0)

can be represented as a sum of terms of three types

Φ(0)
α = Φ(0)

1α + Φ(0)
2α∇ · u + Φ(0)

3α

(
cαcα − 1

3
c2

α

)
: ∇u + Φ(0)

4αcα · ∇E

+
N∑

i=1

Φniαcα · ∇ ni +
M∑

i=N+5

ΦΓiαcα · ∇Γi.

The first term, Φ(0)
1α , is independent on the gas-dynamic variables gradients and we

call it a scalar one. The second one, containing Φ(0)
2α , is proportional to the mixture

mass velocity divergence. The terms of the third type are proportional to the linear
combination of gradients of gas-dynamic variables. Due to such an additive structure,
in this paper we consider only the scalar part responsible for the physical-chemical
processes. The corresponding equation for the dissociating gas has the form

J ′
F

(qe)
1

(
F (qe)

1

)
Φ(0)

1,1 = −1

ε
J

F
(qe)
1

(
F (qe)

1

)
. (7)

The terms of the second and third types are responsible for the spatial inhomogeneity
effects. Considering these effects makes the proposed method generic, overcoming the
limitations of all the previous approaches describing only the spatially homogeneous
situations [6,8].

To check the method, we start with the well studied problem of a small admixture of
dissociating molecules in noble gas mixture. The kinetic equations for such a mixture
have the form

∂F1

∂t
+ v1 · ∇F1 = I1 = Iu

1 + Ic
1 + Inr

1 , (8)
∂Fα

∂t
+ vα · ∇Fα = Iα, α = 2, ..., 5. (9)

Here Fα, Iα and vα is the distribution function, the collisional integral and the veloc-
ity of the molecule of sort α, subindex 1 denotes the dissociating species, subindexes
2 and 3 denote the noble gas species and subindexes 4 and 5 denote the dissoci-
ation reaction products. The first term in the RHS of equation (8), Iu

1 , describes
the metastable molecules decay via unimolecular process and their formation due to
dissociation products agglomeration. The second term, Ic

1, describes the direct dis-
sociation and recombination reactions occurring during the three-particle collisions.
The third term, Inr

1 , corresponds to the nonreactive dual collisions. The detailed
representation of all collision integrals is adduced in Appendix A.

For a small admixture of dissociating molecules, the set of equations (8)-(9) can
be simplified. The concentrations of these molecules and dissociation products are
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small, therefore the collisions of these molecules and dissociation products with each
other can be neglected. This leads to the following simplifications of the set of
kinetic equations: recombination in terms Iu

1 and Ic
1 (proportional to F4F5 product)

is omitted. The summation in Inr
1 and in Ic

1 is reduced to α = 2, 3. That means
that only the collisions of admixture with noble gas particles are considered. In
equations for noble gases (α = 2, 3) only collisions of these gases among each other
are considered. Distributions of dissociation products (α = 4, 5) are assumed to be
Maxwell-Boltzmann and corresponding equations are omitted.

2.2 Small concentration of dissociating molecules.

Before solving equation (7) let us chose the terms in which the system will be
described, namely the list of slow variables. According to the definition (2), they
are defined via the set of approximate summational invariants (ASI) (3), that in
turn are determined by the small parameter ε. This parameter we define as the ratio
of the characteristic chemical time, τch, to the gas-dynamical time, τG. The latter
is determined by the flow parameters τG = L/U , where L ∼ mini {Γi/max |∇Γi|},
and U = c(1 + S) is the gas-dynamic velocity scale. Here c is sound speed, S = u/c,
and u is the gas-dynamic velocity [1]. While studying the one-temperature flow, one
assumes that the following ASI satisfy condition (3)

δα,1, mαvα, e(T )
α (vα) + e(int)

α (kα), (10)

where δα,β is a Kronecker symbol, e(T )
α = mαv2

α/2 and e(int)
α are translational and

internal energies of the molecules of sort α respectively, and kα are the quantum num-
bers determining the internal energy of the molecule. Corresponding gas-dynamic
variables defined according to (2) are number densities of species, mean mixture
momentum and mean total energy.

For molecule energy and statistical weight we use expressions

eα(vα, kα) = e(0)α + e(T )
α (vα) + e(int)

α (jα, qα),

e(int)
α (jα, qα) = e(R)

α (jα) + e(RV )
α (jα, qα) + e(V )

α (qα),

e(TRV )
α (vα, jα, qα) = e(T )

α (vα) + e(R)
α (jα) + e(RV )

α (jα, qα),

sα(kα) = s(R)
α (jα)s(RV )

α (jα, qα)s(V )
α (qα),

(11)

where kα = (jα, qα), e(0)α is the minimum of the potential energy and T , R, and
V denotes translational, rotational and vibrational degrees of freedom respectively.
While solving equation (7) we shall neglect the perturbations of Maxwell-Boltzmann
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distributions for translational and rotational degrees of freedom for all components.
Then the distribution functions can be written as

Fα = F (qe) TR
α Xα, (12)

where

F (qe) TR
α (vα, jα, qα) =

s(R)
α (jα)s(RV )

α (jα, qα)

Q(TR)
α (qα)

exp

[
−e

(TRV )
α (vα, jα, qα)

kT

]
,

Q(TR)
α (qα) =

∑
jα

∫
dvαs

(R)
α (jα)s(RV )

α (jα, qα) exp

[
−e

(TRV )
α (vα, jα, qα)

kT

]
.

(13)

Fα is normalized to the number density nα of particles of sort α. F (qe) TR
α is normalized

to the unity. Thus we have
∑

jα

∫
dvαFα = Xα(qα) and Xα(qα) can be interpreted as

a vibrational population density. Further following tradition we shall write Xα(qα) ≡
Xα,qα.

Now let us consider equation (7). For simplicity in this article we study the case
of uncoupled rotation and vibration (e(RV )

α (jα, qα) = 0) and restrict ourselves with
consideration of diatomic molecules when s(V ) = 1. After substitution of functions
(12) into equation (7) and integration over v1 and summation over j1 one obtains an
equation for X(0)

1,q,1 =
∑
j1

∫
dv1Φ

(0)
1,1(v1, q) (see Appendix B). While calculating the

scalar product in the modified collisional operator (6) the specific set of ASI (10)
should be taken into account. Two last functions are exact summational invariants
which means that the scalar product in (6) is non-zero only for terms containing
derivations over number densities of species Γnα = nα. Corresponding products lead
to the terms containing reaction rates

Rα =
〈
δα,β, I

(
F (qe)

β

)〉
.

For non-reacting species (2, 3 in our case) δα,β is an exact summational invariant
and therefore corresponding rates vanishes (R2 = R3 = 0).

For further analysis we will account presence of other exact summational invari-
ants, namely the total number of atoms in all species. Let us denote molecules of
different species as A1, ..., Aα, ..., AN , and the atoms (elements), that are the parts
of molecule Aα as Aα,k, k = 1, ..., K. Then the molecule can be represented as
ζα,1Aα,1, ..., ζα,KAα,K , where ζα,k is the number of atoms of sort k in the molecule
of sort α (for those molecules that don’t contain element k, ζα,k = 0). Since the
number of particles of each chemical element is kept constant during the chemical
reactions, linear combinations of ASI

∑
β ζβ,kδα,β are exact summational invariants

for k = 1, ..., K [7]. As they are the expressed via ASI, they do not produce new
gas-dynamic variables, but leads to K linear relations between chemical reaction
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rates that reflects the chemical elements conservation
∑
α

ζα,kRα = 0, k = 1, ...K. (14)

After multiplying this equation over atomic mass μk and summation over elements
one obtains the mass conservation law (mα =

∑
k ζα,kμk)

∑
α

mαRα = 0. (15)

For our case of dissociation, this leads to two additional relations

R1 +R4 = 0, R1 +R5 = 0.

that in turn leads to the relation R4 = R5 = −R1 and is used in our following
analysis. As a result the term that contains the derivations over number densities
has the form (

∂X1,n

∂n1
− ∂X1,n

∂n4
− ∂X1,n

∂n5

)
R1 ≡ S1(X1,n)R1. (16)

Summarizing all previous reasonings and assuming only one-quantum vibrational
transitions, one gets the following set of dimensionless equations

ε
(
−(1 − δq,0)jq−1(X

(0)) + (1 − δq,qm)jq(X
(0)) − Pq,dX

(0)
1,q − S(X(qe)

1,q )R(0)
)

= (1 − δq,0)jq−1(X(qe)) − (1 − δq,qm)jq(X(qe)) + Pq,dX
(qe)
1,q + S(X(qe)

1,q )R(qe),

(17)

jq (X) = Pq+1,qX1,q+1 − Pq,q+1X1,q,

where qm is the maximum vibrational quantum number. Here and further for sim-
plification of notations we omit the last subscript 1 in X(0)

1,q,1, in S and in R1, and by
definition

R(qe) =
〈
δα,1, I

(
F (qe)

)〉
= − qm∑

q=0
Pq,dX

(qe)
1,q ,

R(0) =
〈
δα,1, I ′

(
F (qe)

)
Φ(0)

〉
= − qm∑

q=0
Pq,dX

(0)
1,q ,

where Pq,d are the dissociation probabilities of the molecule in vibrational state q.

Pq,q′ =
3∑

α=2

∑
j,j′
j �=j′

∑
kα,k′

α

∫
dvαdv1dv

′
αdv

′
1F

(qe) TR
1 F (qe) TR

α

×W 1,α
1,α (v1, k1,vα, kα|v′

1, k
′
1,v

′
α, k

′
α)

8
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are the averaged vibrational-translational (V T ) transition probabilities and W are
transition probabilities. They satisfy the detailed balance relation (see Appendix B)

Pq,q′ = Pq′,q exp

⎛
⎝−e(V )

1 (q′) − e(V )
1 (q)

kT

⎞
⎠ , (18)

Quasi-equilibrium vibrational population by definition is represented as

X(qe)
1,q = n1χq/Q1, χq = exp

⎛
⎝−e(V )

1 (q)

kT

⎞
⎠ , Q1 =

qm∑
q=0

χq, (19)

where Q1 is the vibrational statistical sum of molecules of type 1.

By setting in (17) X(qe) + εX(0) = X, R(qe) + εR(0) = R, and transforming to
dimensional variables we obtain

(1 − δq,0)jq−1(X) − (1 − δq,qm)jq(X) + Pq,dX1,q + S(X(qe)
1,q )R = 0. (20)

By summing equation for q = 0 and equation for q = 1, and repeating this procedure
for q = 2, etc., we obtain the recurrence relation

jq (X) −
q∑

r=0

(
Pr,dX1,r +RS(X(qe)

1,r )
)

= 0, q = 0, ..., qm − 1.

Summation of all the equations leads to the expression for the total dissociation
rate R

R = −
qm∑
r=0

Pr,dX1,r. (21)

Here the normalizing relationships
∑qm

q=0X
(qe)
1,q = n1 and S(n1) = 1 are taken into

account. Relationship (21) means that the set of equations for X1,q is degenerate
and normalizing relation is used further for closing the problem.

For further algebra simplification we make the assumption that the dissociation
occurs only from the highest vibration level qm, so that Pq,d = δq,qmPqm,d [6]. As a
result the recurrence relations are reduced to

jq (X) −
q∑

r=0

RS(X(qe)
1,r ) = 0, q = 0, ..., qm − 1, (22)

and the sum in expression (21) is reduced to the only one last item.

From equations (22) one obtains

X1,q+1 = aqX1,q + bq, (23)

aq =
Pq,q+1

Pq+1,q
, bq =

1

Pq+1,q

q∑
r=0

RS(X(qe)
1,r ) ≡ R

Pq+1,q
S(Θ(q)),

9
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Θ(q) =
q∑

r=0

X(qe)
1,r , Θ(qm) = n1, S(Θ(qm)) = 1.

Taking into account the detailed balance relationships (18), the expression for aq can
be rewritten in the form aq = χq+1/χq. Solution of the chain of recurrent equations
can be expressed as

X1,q+1 =
q∏

r=0

arX1,0 +
q∑

s=0

bs

q∏
r=s+1

ar, (24)

thus

X1,q =
χq

χ0
X1,0 +Rcq, cq =

q−1∑
r=0

χq

χr+1

S(Θ(r))

Pr+1,r
. (25)

X1,0 is determined from the normalization condition:

n1 =
qm∑
q=0

X1,q =
qm∑
q=0

χq

χ0
X1,0 +R

qm∑
q=1

cq =
Q1

χ0
X1,0 +RC,

that gives

X1,0 = χ0 (n1 −RC)Q−1
1 , C =

qm∑
q=1

cq.

As a result

X1,q = n1
χq

Q1
+R

[
cq − C

χq

Q1

]
. (26)

Finally, using this vibrational distribution function, for dissociation rate (21) we
obtain

R = − Pqm,dn1χqmQ
−1
1

1 + Pqm,d

[
cqm − CχqmQ

−1
1

]

= − Pqm,dX
(qe)
1,qm

1 + Pqm,d

[
cqm − CX(qe)

1,qm
n−1

1

] .
(27)

This expression slightly differs from that obtained by Stupochenko et al [6], and
coincides with it if the normalization factor is accounted with the same accuracy
as in [6]. It means that Cχqm/Q1 is neglected in comparison with cqm, and S(Θ(r))
are replaced by Θ(r)/n1. S-factor for the dissociation reactions (see (16)) can be
represented as

S(X(qe)
1,g ) =

X(qe)
1,g

n1

⎛
⎝1 +

n1

(
e(V )
1 (g) − E(V )

)
kT

S(ln(kT ))

⎞
⎠ , (28)

where E(V ) =
qm∑
q=0

e(V )
1 (q)X(qe)

1,g /n1.

10
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It reflects the chemical reaction affect on the temperature and will be analyzed in
more details elsewhere.

Substituting expression (27) into (26), after some algebra one obtains

X1,q =
n1 (χq + Pqm,d(cqmχq − cqχqm))

Q1

(
1 + Pqm,d

(
cqm − CχqmQ

−1
1

)) . (29)

From this expression one can see that in the limits of low and high vibrational
quantum numbers q this distribution is close to Boltzmann distribution with the
same temperature, but with different normalizing factors, with the ratio of 1 +
Pqm,dcqm.

Now let us analyze the expression (27) in the limits of low and high pressure taking
into account that the vibrational transition probabilities are proportional to the
number densities of the noble gases

Pq,q−1 = p(2)
q,q−1n2 + p(3)

q,q−1n3 = [M ]
(
p(2)

q,q−1ξ2 + p(3)
q,q−1ξ3

)
. (30)

Here nα, [M ] =
∑

α nα, ξα (α = 2, 3) are number densities of the noble gases, total
number density, and number concentrations (nα = ξα[M ]) of noble gases respec-
tively. Then cN ≈ c′N [M ]−1, C ≈ C ′[M ]−1, where primed parameters are pressure
independent. Besides, let us represent the dissociation probability as a sum of proba-
bilities for unimolecular and collisional process that correspond to collision integrals
Im and Ic of equation (8) respectively

Pq,d = P (u)
q,d + P (c)

q,d = P (u)
q,d + p(c)

q,d[M ] = P (u)
q,d +

(
p(c,2)

q,d ξ2 + p(c,3)
q,d ξ3

)
[M ], (31)

where the probability of unimolecular decay is independent of the gas density, while
collisional probability is proportional to [M ]. After substitution of formulas (30) and
(31) into the expression for dissociation rate (27) for low pressure limit ([M ] → 0)
one obtains

R0 = − ξ1χqmQ
−1
1

c′qm
− C ′χqmQ

−1
1

[M ]2. (32)

While deriving the last expression it was assumed that P (u)
q,d �= 0. That means that the

rate (32) is determined by the unimolecular mechanism. As it was already mentioned
in [6], the reaction rate in this limit does not depend on the dissociation probability.

For high pressure limit ([M ] → ∞) expression (27) transforms to

R∞ = − ξ1χqmQ
−1
1 [M ]

1 +
(
p(c,2)

qm,dξ2 + p(c,3)
qm,dξ3

)
(c′qm

− C ′χqmQ
−1
1 )

×
⎡
⎣(p(c,2)

qm,dξ2 + p(c,3)
qm,dξ3

)
[M ] +

P (u)
qm,d

1 +
(
p(c,2)

qm,dξ2 + p(c,3)
qm,dξ3

)
(c′qm

− C ′χqmQ
−1
1 )

⎤
⎦ .

(33)

11
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The collisional part of the dissociation probability P (c)
N,d is disregarded by the majority

of investigators. In this case R∞ transforms to the equilibrium one which equals to
P (u)

N,dχNQ
−1
1 n1. As we can see from (33), it is not the general case. It can be explained

as follows. For the high pressure limit the collisionally induced processes prevail
over the unimolecular ones (see (31)). At the same time the ratio of the collisional
reaction rate and the vibration relaxation rate is pressure independent, therefore it
does not vanish at high pressures. It should be pointed out that there is no reason
for neglecting the collisionally induced processes.

As pressure grows, the thermal dissociation mechanism changes from the unimolec-
ular one to the collisional one.

Thus the approach suggested in [1] allows to reproduce the following well-proved
fact of the chemical physics: the dissociation reaction mechanism is modified when
passing from low to high pressures [5,9]. This allows to conclude that from the phys-
ical point of view it is an adequate generalization of the Chapman-Enskog method
for the gases with internal degrees of freedom.

One more feature of the dissociation process should be mentioned here. Conven-
tional expression for the dissociation rate in the presence of two noble gases is
R = −K2n2n1 − K3n3n1, where K2 and K3 are the rate constants in gas 2 and
in gas 3 respectively. On the other hand, from equation (27) with the probabil-
ity (30), it follows that non-equilibrium rate depends on the noble gas density
in a much more complicated form. This means that in non-equilibrium situation
(Pqm,d(cqm −CX(qe)

1,qm
n−1

1 ) ≥ 1) the reaction rate R is not a linear function of the mix-
ture species concentrations and in general could not be obtained from the individual
data for different component rates. It should be mentioned here that both cqm and
C are complex functions of noble gas concentrations.

2.3 Arbitrary concentration of dissociating molecules.

If the concentration of dissociating molecules is not small the vibration-vibration
(V V ) energy transfer as well as recombination should be taken into account [8].
Here we consider only a one-temperature case.

We describe the system in terms of gas-dynamic (slow) variables: species densities,
mean bulk velocity, and mean total mixture energy. We assume that the perturba-
tion of the translational-rotational distribution function of the dissociating gas is
negligible, therefore the Maxwell-Boltzmann distribution for them can be used. For
simplicity, we use the assumption that the perturbation of the Maxwell-Boltzmann
distribution of all dissociation products is also negligible. Then equation (7) can be
reduced to the equation for vibrational population densities X1,q of species 1, as it
was done in Section 2.2. The vibrational collisional operator I(V )

1 (operator I1 in-
tegrated over velocities v1 and summed over rotation quantum numbers j1) can be

12
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written as
I(V )
1 = I(ch)

1 + I(V T )
1 + I(V V )

1 ,

where superscripts ch, V T and V V denote chemical reactions (both unimolecular
and collisional), to vibration-translation and vibration-vibration transitions respec-
tively. In this case

I(V T )
1,q =

∑
r �=q

(Pr,qX1,r − Pq,rX1,q) ,

I(V V )
1,q =

∑
s,l,r �=q

(
Qs,l

r,qX1,rX1,s −Ql,s
q,rX1,qX1,l

)

≡ ∑
r �=q

(Qr,q(X1)X1,r −Qq,r(X1)X1,q) .

Due to the detailed balance relation one has

Pr,qX
(qe)
1,r = Pq,rX

(qe)
1,q , Qs,l

r,qX
(qe)
1,r X

(qe)
1,s = Ql,s

q,rX
(qe)
1,q X

(qe)
1,l , (34)

where X(qe) was defined in (19). For simplicity we consider only one-quantum tran-
sitions. Then

Pr,q = (δr,q+1 + δr,q−1)Pr,q, Qs,l
r,q = (δr,q+1δl,s+1 + δr,q−1δl,s−1)Q

s,l
r,q,

and
I(V T )
1,q = (1 − δq,0) (Pq−1,qX1,q−1 − Pq,q−1X1,q)

−(1 − δq,qm) (Pq,q+1X1,q − Pq+1,qX1,q+1) ,

I(V V )
1,q = (1 − δq,0)

qm−1∑
l

(
Ql+1,l

q−1,qX1,q−1X1,l+1 −Ql,l+1
q,q−1X1,qX1,l

)

+(1 − δq,qm)
qm−1∑

l

(
Ql,l+1

q+1,qX1,q+1X1,l −Ql+1,l
q,q+1X1,qX1,l+1

)

≡ (1 − δq,0)Qq−1,q(X)X1,q−1 −Qq,q−1(X)X1,q

−(1 − δq,qm) (Qq,q+1(X)X1,q −Qq+1,q(X)X1,q+1) ,

where qm is the highest vibrational level.

Introducing effective transition probabilities

P̃i,j(X1) = Pi,j +Qi,j(X1),

13
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one can get the following expression for the collisional operator I(V )
1,q (X1)

I(V )
1,q = (1 − δq,0)j̃q−1(X1)X1 − (1 − δq,qm)j̃q(X1)X1 − δq,qm (Pq,dX1,q − Pq,rn4n5) ,

j̃q(X)Y = P̃q+1,q(X)Y1,q+1 − P̃q,q+1(X)Y1,q,

where Pqm,d is dissociation probability of the molecule in state qm, and Pqm,r is
recombination probability of the dissociation products to initial molecule in state
qm respectively, subindexes 4 and 5 denote the dissociation products. Pq,d(r) with
q < qm are assumed to be negligible. It should be mentioned that according to (34)
one has j̃q(X(qe))X(qe) = 0.

Since the modified collision operator (6) contains only one nonzero term in the
sum over the approximate summational invariants, which corresponds to ψi = δi,j,
equation (7) for the scalar part of the perturbation of the distribution function in
dimensionless form can be written as

ε

⎛
⎝−(1 − δq,0)j̃q−1(X

(qe)
1 )X(0)

1 + (1 − δq,qm)j̃q(X
(qe)
1 )X(0)

1 + δq,qmPq,dX
(0)
1,q

+S1

(
X(qe)

1,q

)
R(0)

1 − (1 − δq,0)j̃′q−1(X
(0)
1 )X(qe)

1 + (1 − δq,qm)j̃′q(X
(0)
1 )X(qe)

1

⎞
⎠

= (1 − δq,0)j̃q−1(X
(qe)
1 )X(qe)

1 − (1 − δq,qm)j̃q(X
(qe)
1 )X(qe)

1

−δq,qm

(
Pq,dX

(qe)
1,q − Pq,rn4n5

)
− S1

(
X(qe)

1,q

)
R(qe)

1 ,

(35)

j̃′q(X)Y = Qq+1,q(X)Y1,q+1 −Qq,q+1(X)Y1,q.

Here S1(X) is defined in (16) and, as in Section 2.2,

R(qe)
1 =

〈
δα,1, I

(
X(qe)

1

)〉
= −∑qm

q=0

(
Pq,dX

(qe)
1,q − Pq,rn4n5

)
,

R(0)
1 =

〈
δα,1, I ′

(
X(qe)

1

)
X(0)

1

〉
= −∑qm

q=0 Pq,dX
(0)
1,q .

Sums in these expressions are reduced to their last terms since we neglect all dis-
sociation/recombination process except with participation of the highest excitation
level.

Let us introduce new variables X1 = X(qe)
1 + εX(0)

1 , R1 = R(qe)
1 + εR(0)

1 using
the relationship j̃′q−1(X

(0)
1 )X(qe)

1 = j̃′q−1(X1)X
(qe)
1 , which follows from equations

j̃′m(X(qe)
1 )X(qe)

1 = 0 and j̃′m(X + Y )Z = j̃′m(X)Z + j̃′m(Y )Z. Returning to dimen-
sional variables, one can rewrite (35) as

14
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(1 − δq,0)j̃q−1(X
(qe)
1 )X1 − (1 − δq,qm)j̃q(X

(qe)
1 )X1

−δq,qm (Pq,dX1,q − Pq,rn4n5) − S1

(
X(qe)

1,q

)
R1

+(1 − δq,0)j̃′q−1(X1)X
(qe)
1 − (1 − δq,qm)j̃′q(X1)X

(qe)
1 = 0.

(36)

From the expression for R1 one can see that reaction rate is determined not by the
equilibrium or quasi-equilibrium distribution, but by the quasi-stationary one, X1,
that will be found from equation (36).

Summation of these equations (analogous to that in Section 2.2), yields a set of
equations

(1 − δq,qm)j̃q(X
(qe)
1 )X1 + (1 − δq,qm)j̃′q(X1)X

(qe)
1

+δq,qm (Pq,dX1,q − Pq,rn4n5) +
qm∑
k=0

S1

(
X(qe)

1,k

)
R1 = 0.

(37)

This set of equations has a more complex structure than (22): it contains non-
diagonal terms due to the j̃′q(X1)X

(qe)
1 term. To solve (37), we will use an iterative

procedure similar to that suggested in [8] for a two-temperature case. Following de-
finition from [8], [10] we consider only the case of a so called weekly exited system.
This means that the populations of exited levels are so small that the V V transi-
tions occur mainly with participation of the low levels. This can be expressed as
Ql,l+1

q+1,qX1,q+1X1,l � Qq,q+1
q+1,qX1,q+1X1,q while l � q. In this case Qq+1,q(X) is weekly

dependent on the form of X as a function of q. Since V V -exchange with participa-
tion of low levels predominates, the main contribution into Qq+1,q(X) comes from
terms with small l, for which the distribution function for which is close to Boltz-
mann distribution. We shall keep all this in mind and apply this procedure later,
just before obtaining the expression for the reaction rate.

The expressions for the vibrational population densities formally are similar to that
obtained in a linear case in Section (2). The detailed balance relations (34) are used:

X1,q+1 = aqX1,q + b̃q, aq =
P̃q,q+1

(
X(qe)

1

)
P̃q+1,q

(
X(qe)

1

) =
χq+1

χq
,

b̃q =
1

P̃q+1,q

(
X(qe)

1

)
( q∑

k=0

R1S1

(
X(qe)

1,k

)
− j̃′q(X1)X

(qe)
1

)
≡ R1S1

(
Θ(q)

)
P̃q+1,q

(
X(qe)

1

) + b̃′q,

Θ(q) is defined in (23). This allows to use eq. (24) and to write

X1,q+1 =
q∏

i=0

aiX1,0 +
q∑

m=0

b̃m
q∏

i=m+1

ai. (38)
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Thus

X1,q =
χq

χ0
X1,0 +R1c̃q + ˜̃cq,

c̃q =
q−1∑
m=0

χq

χm+1

S1

(
Θ(m)

)
P̃m+1,m(X(qe)

1 )
, ˜̃cq(X1) = −

q−1∑
m=0

χq

χm+1

j̃′m(X1)X
(qe)
1

P̃m+1,m(X(qe)
1 )

.

(39)

As in previous section, X1,0 can be determined from the normalization condition:

n1 =
qm∑
q=0

X1,q =
qm∑
q=0

χq

χ0
X1,0 +R1

qm∑
q=1

c̃q +
qm∑
q=1

˜̃cq ≡ Q̃1

χ0
X1,0 +R1C̃ + ˜̃C,

which gives

X1,q =

(
χq

Q̃1

(
n1 − ˜̃C

)
+ ˜̃cq

)
+R1

(
c̃q − χq

Q̃1

C̃

)
≡ X(qe)

1, q + Aq +R1Bq, (40)

where Bq is determined only by the quasi-equilibrium distribution and therefore does
not change during the iterative procedure. After multiplying Eq (40) by −Pq,d and
adding −Pq,rn3n4 to both sides we obtain

R1 =
R(qe) − Pqm,dAqm

1 + Pqm,dBqm

, R(qe) = Pqm,dX
(qe)
1,qm

− Pqm,rn4n5. (41)

The iterative algorithm is described below.

X1,q (n) = X(qe)
1, q + Aq(n) +R1(n)Bq Aqm(n) = Aqm(X1(n−1)).

Using X(qe)
1 for a primeval approximation for X1, we have Qi,j (0) = Qi,j(X

(qe)
1 ),

j̃′q (0)(X
(qe)
1 )X(qe)

1 = 0, ˜̃cq = ˜̃C = 0. Then Aq (0) = 0 and X1,q (0) = X(qe)
1, q + R1(0)Bq

according to (40), that coincides with the result for a small admixture (26). After
substituting it into expressions for ˜̃cq and ˜̃C, one obtains

R1 (0) =
R(qe)

1 + Pqm,d (Bqm + Aqm(c̃))
. (42)

since ˜̃cq(X1 (0)) = R1
˜̃cq(B) = R1

˜̃cq(c̃), ˜̃C(B) = ˜̃C(c̃). If V V processes are negligible
then ˜̃cq → 0, ˜̃C → 0, c̃q → cq and C̃ → C. It gives us (27) obtained for small
dissociating admixture concentration. In further approximations no corrections in
denominator of the expression for reaction rate arise, but only in the numerator. For
the first iteration we obtain the same result as for the zero one, and for the second
one

R1 (2) =
R(qe)

(
1 − (1 + Pqm,dBqm)−1Aqm(˜̃c(c̃))

)
1 + Pqm,d (Bqm + Aqm(c̃))

.
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To study the dependence of the dissociation rate on pressure, let us separate the
dissociation and recombination processes in expression (42)

R1 = R1,d − R1,r, (43)

and introduce the following dependencies, keeping ξα = [M ]−1nα, α = 1, ..., 5, con-
stant:

P̃i,j = [M ]p̃i,j(ξ1, ..., ξ5), Pq,d = P (u)
q,d + [M ]p(c)

q,d(ξ1, ..., ξ5),

Pq,r = P (u)
q,r + [M ]p(c)

q,r(ξ1, ..., ξ5), c̃q ≈ [M ]−1c′q, C̃ ≈ [M ]−1C̃ ′, Bq ≈ [M ]−1B′
q.

Here p̃i,j = q(1)
i,j ξ1 +

5∑
α=1

p(α)
i,j ξα, p(c)

q,d =
5∑

α=1
p(c, α)

q,d ξα, and p(c)
q,r =

5∑
α=1

p(c, α)
q,r ξα; p(α)

i,j are

responsible for V T processes, while q(1)
i,j for the V V processes; p(c, α)

q,d are responsi-
ble for collisional dissociation processes; p(c, α)

q,r are responsible for the three particle
recombination reactions. We also use that ˜̃cB q = [M ]−1˜̃c′B q,

˜̃CB = [M ]−1 ˜̃C ′
B, and

therefore Aq = [M ]−1A′
q. Here all primed parameters are independent of pressure.

As a result, in a low pressure limit, for R1,d defined by (43) and (42) one obtains

R1 (0),d 0 = − χqm

B′
qm

+ A′
qm

(c̃)
ξ1[M ]2. (44)

In a high pressure limit it results in

R1 (0),d∞ = − p(c)
qm,dχqm

1 + p(c)
qm,d

(
B′

qm
+ A′

qm
(c̃)
)ξ1[M ]2. (45)

Analogous to the case of small admixture, the low pressure reaction rate does not
depend on the reaction probability, and with pressure increase we observe a tran-
sition from unimolecular reaction mechanism to the collisional one. The difference
between (45) and (33) consists in that in (45) we kept only the main term of expan-
sion, proportional to [M ]2, while in (33) we kept also the next term, proportional to
[M ].

For recombination part R1,r in a low pressure limit one obtains

R1 (0),r 0 =
P (u)

qm,rξ4ξ5

P (u)
qm,d

(
B′

qm
+ A′

qm
(c̃)
) [M ]3, (46)

and for high pressure limit

R1 (0),r ∞ =
p(c)

qm,rξ4ξ5

1 + p(c)
qm,d

(
B′

qm
+ A′

qm
(c̃)
) [M ]3. (47)

For both dissociation and recombination processes, increasing pressure causes a tran-
sition from unimolecular regime to the collisional one.

The dependence of rates on the noble gas concentrations is not significant, though
it is more complex in comparison with the case of a small reactive admixture.
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3 Exchange reactions.

Expression similar to (27) can be obtained for exchange reactions [1]+[C] → [B]+[D]
if concentration of reagent [C] can be assumed to be constant (for instance it is high
enough not to account its vanishing during chemical reactions). In this case we set
PN,d = p(c)

C [M ]ξC in (27), where ξC is the concentration of reagent C. S-operator
defined by (16) should be also modified. For exchange reactions the relation between
reaction rates is a little bit more complicated. These relations can be find from the
set of relations (14) for different k:

ζ1,kR1 + ζC,kRC + ζB,kRB + ζD,kRD = 0.

Taking three different k (or two different k if B and D are identical) we can obtain
expressions RC = ηCR1, RB = ηBR1, RD = ηDR1, where ηC , ηB, ηD are the functions
of ζ1,k, ζC,k, ζB,k, ζD,k. Therefore the modified Sex-operator is defined by the relation

(
∂X1,q

∂n1
+ ηC

∂X1,q

∂nC
+ ηB

∂X1,q

∂nB
+ ηD

∂X1,q

∂nD

)
R1 ≡ Sex1(X1,q)R1, (48)

and one should use Sex1(X
qe
1,q) instead of S for calculation cqm and C in Eq.(27). This

leads to the modification of the pressure dependence of the reaction rate

R1 = − p(c)
C χqmQ

−1
1 ξCξ1

1 + p(c)
C ξC

[
c′qm

− C ′χqmQ
−1
1

] [M ]2. (49)

In this expression the denominator is independent of pressure. Thus, in contrast to
the case of unimolecular reactions, the reaction order does not change with pressure
and reaction rate differs from the equilibrium one at all pressures. The last feature
can be interpreted in the same way as the previous result for the dissociation reac-
tions (see equations (32, 33)): the high-pressure limit does not imply vanishing the
ratio of reaction time to relaxation time, unlike in unimolecular reactions:

p(c)
C ξC

[
c′qm

− C ′χqmQ
−1
1

]
≈ p(c)

C ξC
pqm,qm−1

≈ τV TQ1

τchemχqm

= ε
Q1

χqm

,

R1 ≈ −p
(c)
C χqmξCξ1pqm,qm−1

p(c)
C ξCQ1

[M ]2 =
χqmpqm,qm−1ξ1

Q1
[M ]2.
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4 Parallel Reactions.

4.1 Dissociation into different channels from one vibrational state.

Let us first consider the simplest example of parallel reactions, where a molecule
of sort 1 decays from vibrational level qm in two channels C and D, that can be
described as 1 → C1 + C2 and 1 → D1 + D2 respectively. Only one sort of noble
gas with concentration ξ2 is considered. This situation can be described by setting
in the previously obtained formulas for reaction rates

Pd = PC + PD, PI = P (u)
I + p(c)

I ξ2[M ], I = C,D.

From (14) it follows that

RC1 = RC2 = RD1 = RD2 = −R1.

Then the S-operator can be written as

S1(X1,q) =

(
∂

∂n1
− ∂

∂nC1

− ∂

∂nC2

− ∂

∂nD1

− ∂

∂nD2

)
X1,q.

Then the level population

X1,q = n1
χq

Q1
+R1Aq, Aq = cq − C

χq

Q1
,

where cn and C contains S1-factor as a co-factor. As a result for total dissociation
rate R1 = −Pqm,dX1,qm = −Pqm,dn1χqm/Q1 − Pqm,dR1Aqm we obtain:

R1 = −Pqm,dn1χqm/Q1

1 + Pqm,dAqm

= − (PC + PD)n1χqm

Q1 [1 + (PC + PD)Aqm ]
= R1C +R1D,

R1I = −
(
P (u)

I + p(c)
I ξ2[M ]

)
χqmξ1

Q1

[
1 +

((
P (u)

C + P (u)
D

)
[M ]−1 + p(c)

C + p(c)
D

)
A′

qm

] [M ],

(50)

where Aq = A′
q[M ]−1, and A′

q is independent of pressure.

From (50) we see that reactions C and D depend on each other since the rates RI

depend on PC and PD. Therefore a traditional concept of rate constants can not be
used.

This effect can be observed experimentally if only one of the channels can be ex-
cluded, for instance if reaction C is caused by some additional component C.
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4.2 Parallel reactions of one species in different vibrational states.

One more example of non-equilibrium effects in parallel reactions can be illustrated
by considering the situation when a molecule of sort 1 on level K reacting with a
molecule of sort C. We further denote this reaction as reaction C, while reaction of
the molecule on level N we denote as reaction D. The activation energy of reaction
C is lower than D. Now let us assume that the perturbation of the C-component
distribution function as well as concentrations of the products are negligible. It can
be described by substituting Pn,d into equation (17) by PCδq,K + PDδq,qm. The term

that contains the derivations over number densities of species
∑
α

∂X(qe)
1

∂nα
Rα can not

be reduced to the S-factor due to the lack of relations that reflects the elements
conservation (14). Remembering eq. (28), this sum can be written as

∑
α

∂X(qe)
1,k

∂nα
Rα =

∑
α

X(qe)
1,k

n1

⎛
⎝δ1α +

n1

(
e(V )
1 (k) −E(V )

)
kT

∂ ln (kT )

∂nα

⎞
⎠Rα.

Assuming thermal effects to be small, we shall further neglect the derivation ∂T/∂nα.
Then the set of equations (22) for X1,q = X(qe)

1,q +X(0)
1,q can be rewritten as

jq(X) − PCX1,Kθ(q −K) −
q∑

k=0

RX(qe)
1,k /n1 = 0, q = 0, ..., qm − 1,

where jq is defined in (17) and equation (21) is replaced by

R = −PCX1,K − PDX1,qm = RC +RD. (51)

Here θ (x) is the Heaviside function: θ = 0 for x < 0 and θ = 1 for x ≥ 0. The
recurrent relationship thus takes the form

X1,q+1 =
χq+1

χq
X1,q +

1

Pq+1,q

⎡
⎣R q∑

k=0

X(qe)
1,k

n1
+ PCX1,Kθ(q −K)

⎤
⎦ .

Solution of this equation can be written in the form (23) where bq should be replaced
by b ′q

b′q = bq +
PC

Pq+1,q
X1,Kθ(q −K) =

R

Pq+1,q

Θ(q)

n1
+

PC

Pq+1,q
X1,Kθ(q −K).

After some algebra, similar to that done in the previous section, for the vibrational
population distribution one obtains

X1,q = χqX1,0/χ0 + θ(q − 1 −K)PCX1,Kdq +Rcq,

dq =
q−1∑

m=K

χq

χm+1

1

Pm+1,m
,
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dq = 0 when q ≤ K, and cq is defined in (25).

Taking into account that X1,K = χKX1,0/χ0 + RcK , expression for X1,q can be
rewritten as

X1,q = [χq + θ(q − 1 −K)PCχKdq]
X1,0

χ0
+R [cq + θ(q − 1 −K)PCcKdq] . (52)

As shown further, due to depletion of level K caused by corresponding chemical
reaction, this distribution function can vanish at some level q0 ≤ qm. In this case the
level population for q > q0 becomes negative and therefore has no physical meaning
(as for q > qm) and we should reformulate the normalization condition for X1,0

n1 =
q0∑

q=0

X1,q =
X1,0

χ0

⎡
⎣ q0∑

q=0

χq + PCχK

q0∑
q=0

θ(q − 1 −K)dq

⎤
⎦

+R
q0∑

q=0

cq +RPCcK

q0∑
q=0

θ(q − 1 −K)dn

= X1,0 (Q1 0 +H0) /χ0 +R (C0 +G0) ,

C0 =
q0∑

q=0

cq, G0 = PCcK
q0∑

q=0

θ(q − 1 −K)dq = PCcK
q0∑

q=K+1

dq = PCcKD0,

Q1 0 =
q0∑

q=0

χq, H0 = PCχK

q0∑
q=0

θ(q − 1 −K)dq = PCχK

q0∑
q=K+1

dq = PCχKD0.

X(qe)
q is then redefined as X(qe)

q = n1χq/Q1 0.

If q0 is larger than qm, then qm should be used instead of q0 and Q1 0, C0, G0, H0

should be replaced by Q1, C, G, H defined in Section 2.2.

As a result we obtain

X1,0 = (Q1 0 +H0)
−1(n1 − R(C0 +G0))χ0,

and thus

X1,q =
Q1 0

Q1 0 +H0

[
X(qe)

1,q + θqPCX
(qe)
1,K dq

]

+R

⎡
⎣cq −Q1 0

C0 +G0

Q1 0 +H0

X(qe)
1,q

n1
+ θqPCdq

⎛
⎝cK −Q1 0

C0 +G0

Q1 0 +H0

X(qe)
1,K

n1

⎞
⎠
⎤
⎦

= n1(Q1 0 +H0)−1 [χq + θqPCχKdq] +R [Wq + θqPCdqWK ] .

(53)
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Here and further θq ≡ θ(q − 1 − K) and Wq = cq − C0 +G0

Q1 0 +H0
χq. This expression

coincides with (26) when PC → 0 and q0 → qm.

For the first term in (51) one has

RC = −PCX1,K = −(Q1 0 +H0)−1PCχKn1 − RPCWK , (54)

and for the second one

RD = −PDXq0 = −PD (χq0 + PCχKdq0)n1

(Q1 0 +H0)
− RPD (Wq0 + PCdq0WK) . (55)

It means that reaction D is treated as a reaction from the highest (floating) pop-
ulated level, but not necessarily from level qm. If the dissociation from every level
q ≤ q0 is considered, then more smooth dependence of reaction rates on a floating
level q0 will be obtained, but it leads to more complex formulas that we were trying
to avoid for the clarity of presentation. If dissociation is selective, occurring from
level qm only, the simplifications in all further results can be obtained by setting
PD = 0.

Then for reaction rate (51) one has

R = −n1
PCχK(1 + PDdq0) + PDχq0

Q1 0S0
,

S0 = 1 + PD

(
cq0 − C0Q

−1
1 0χq0

)
+Q−1

1 0D0PCχK

+PC

(
(1 + PDdq0)

(
cK − C0Q

−1
1 0χK

)
+Q−1

1 0D0PD (cq0χK − cKχq0)
)
.

(56)

In the limit PC → 0 this expression converts into (27), since q0 should be replaced
by qm in this case.

After substituting (56) into (53) and some algebra one obtains for the quasi-station-
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ary distribution function

X1,q =
n1

Q1 0S0

[
χq − PCcK(θqχK − χq) − PCχK

(
(1 − θq)cq − θqd̂q

)
+ ϕ0 q

]
,

d̂q =
q−1∑

m=K

χq

χm+1

1

Pm+1,m

(
1 − S

(
θ(m)

))
,

ϕ0 q = PCPD (χK(θqdncq0 − dq0cn)

+cK(dq0χq − θqdqχq0)) + PD(cq0χq − cqχq0).

(57)

The first term in ϕ0 q proportional to PCPD can be treated as a continuous function
of q in the interval K < q ≤ N0. It decreases when q increases and vanishes at
q = q0, therefore it is positive. The same is for 0 ≤ q ≤ K since it vanishes at q = K.
The second term is positive for all q < q0. The condition for determination q0 is
X1,q0 = 0. This leads to the equation (ϕ0 q0 = 0)

(1 + PCcK)χq0
0
− PCχK(cK − d̂q0

0
) = 0. (58)

q0
0 being the solution of this equation may be non-integer. Then the nearest integer

less than q0
0 should be chosen for q0.

Considering PC as a function of the mixture number density [M ] in the form PC =

P (u)
C + p(c)

C ξC [M ] one gets the expression for q0
0 as a function of [M ]:

χq0
0

χK
=

(
P (u)

C + p(c)
C ξC [M ]

)
(c′K − d̂′q0

0
)

[M ] + (P (u)
C + p(c)

C ξC[M ])c′K
, (59)

where ci ≈ c′i[M ]−1, d̂j ≈ d̂′j [M ]−1 and c′i and d̂′j are independent of [M ]. When d̂q0

is much smaller than cK , this equation can be solved by iterations.

Since the behavior of the system differs significantly for the case of q0
0 < qm and

q0
0 > qm, we separate them in our analysis. Introducing critical value of the mixture

number density

[M ]c =
P (u)

C (χ−1
qm
χK(c′K − d̂′q0

0
) − c′K)

1 + p(c)
C ξCχ−1

qm
χK d̂′q0

0
− p(c)

C c′KξC(χ−1
qm
χK − 1)

=
P (u)

C c′K
ε(c)

c − p(c)
C ξCc′K

,

ε(c)
c =

1

χ−1
qm
χK − 1 − χ−1

qm
χK d̂′q0

0
c′−1
K

,

(60)

and using relations (58) and (59)(q0
0 < qm corresponds to χN0

0
> χN and therefore

to
(
ε(c)

c − p(c)
C ξCc′K

)
([M ] − [M ]c) < 0) one can conclude that if p(c)

C ξCc′K > ε(c)
c then
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[M ]c < 0 and thus q0
0 < qm at any values of [M ], and q0

0 is determined according to
(59). If p(c)

C ξCc′K < ε(c)
c , then q0

0 < qm at [M ] < [M ]c. If [M ] > [M ]c then q0
0 > qm

and in all expressions q0
0 should be replaced by qm and we shall use notations C, D

and Q1 instead of C0, D0 and Q1 0 respectively.

From expression (59) it is seen that for the high-pressure limit (that implies [M ] >
[M ]c)

χq0
0

χK
=
p(c)

C ξC(c′K − d̂′q00)

1 + p(c)
C ξCc′K

. (61)

Since the RHS of this relation is always less than unity, the solution for q0
0 ≥ K

always exist. If p(c)
C ξCc′K ≤ ε(c)

c , then q0
0 ≥ qm and in all expressions q0 should be

replaced by qm. If p(c)
C ξCc′K ≤ ε(c)

c , q0 is determined by expression (61).

For the low-pressure limit one obtains

χq0
0

χK
= 1 −

d̂′q0
0

c′K
, (62)

then for d̂′q0
0
� c′K the maximal level q0 is close to K.

4.3 Parallel reaction rates.

Let us consider expression (51), in order to separate the contribution of reaction C
from that of reaction D and to study their mutual impact, using expressions (54),
(55) for RC and RD and expressions

X1,K =
X(qe)

K

S0

[
1 + PDcq0

(
1 − χq0

χK

cK
cq0

)]
,

X1,q0 =
X(qe)

q0

S0

[
1 + PCcK

(
1 − χK

χq0

(
1 − d̂q0

cK

))]
.

(63)

Since for rather high q0 values X1,q0 slightly depends on q0, one can replace it by q0
0

and rewrite the expression for X1,q0 as

X1,q0 ≈
X(qe)

q0

S0

(
ε(c)

c − p(c)
C ξCc′K

)
ε(c)

c [M ]
([M ] − [M ]c) . (64)

Thus X1,q0 vanishes when q0 becomes smaller than qm.

Introducing the partial rates R0
C = RC(PD = 0) and R0

D = RD(PC = 0) that
correspond to the reactions without parallel ones, RC = PCX1,K and RD = PDX1,q0

24



Физико-химическая кинетика в газовой динамике www.chemphys.edu.ru/pdf/2011-06-16-001.pdf

rates for C and D reactions respectively can be represented as

RC = R0
CΔC , R0

C = −PC
n1

Q1 0SC0
χK ,

ΔC =
SC0

S0

(
1 + PD(cq0 − cKχ

−1
K χq0)

)
,

SC0 = 1 + PC

(
cK −Q−1

1 0 (C0 −D0)χK

)
,

(65)

RD = R0
DΔD, R0

D = −PD
n1

Q1 0SD0
χq0 ,

ΔD =
SD0

S0

(
1 + PCcK − PCχ−1

q0
χK(cK − d̂q0)

)
,

SD0 = 1 + PD

(
cq0 − C0Q

−1
1 0χq0

)
.

(66)

Factors ΔC0 and ΔD0 describe the mutual effect of parallel reactions. Their deviation
from unity indicates the scope of the effect. If q0 ≥ qm then the rate R0

D0 coincides
with R in (27).

If q0 ≤ qm then the expression for ΔD can be rewritten using the relationship (58)

ΔD =
SD0

S0
(1 + PCcK)

⎛
⎝1 − χq0

0

χq0

cK − d̂q0

cK − d̂q0
0

⎞
⎠ (67)

Since q0
0 and q0 are very close to each other, ΔD in (67) is very close to zero. This

means blocking reaction D for q0 ≤ qm.

From (63) and (66) one can see that X1,qm and ΔD become negative in the same
conditions. It means that for p(c)

C ξCc′K ≥ ε(c)
c reaction D is blocked regardless of

pressure. For p(c)
C ξCc′K < ε(c)

c reaction D is blocked for low pressure, when [M ] <

[M ]c. In Fig.1 domains on [M ] − p(c)′
C plane where reaction D is allowed or blocked

are shown (p(c)′
C = p(c)

C ξCc′K/ε
(c)
c ).

From expressions (65), (66) the asymmetry of reactions C and D can be seen, since
ΔD vanishes under described conditions. It is also shown by the fact that [M ]c and
ε(c)

c depend only on probabilities of reaction C. It should be also mentioned that
both ε(c)

c and [M ]c are pressure independent.
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0  1  

[M]
c
(0)

[M]

p
C
(c)’

Allowed
zone

Blocked
zone

Figure 1. Domains on [M ] − p
(c)′
C plane where reaction D is allowed and blocked;

p
(c)′
C = p

(c)
C ξCc′K/ε

(c)
c . The curve distinguishing these domains is a function

[M ]c = [M ]c(p
(c)′
C ) (see eq.(60)); [M ]c(0) = P

(u)
C c′K/ε

(c)
c . For P

(u)
C = 0 allowed/blocked

domains degenerate to p
(c)′
C < 1 and to p

(c)′
C > 1 ones respectively.

4.4 Dependence of reaction rates on pressure.

Now let us analyze the behavior of these expressions at low and high pressure limits
assuming component concentrations ξα = nα/[M ], α = 1, 2, C to be fixed. Further,
opposite to (33), we keep only the principal terms in the correspondent expansions
over [M ].

The following cases exist:

I. PC = P (u)
C + P (c)

C = P (u)
C + p(c)

C ξC [M ], PD = P (u)
D + P (c)

D = P (u)
D + p(c)

D ξ2[M ];

II. PC = P (c)
C = p(c)

C ξC[M ], PD = P (u)
D + P (c)

D = P (u)
D + p(c)

D ξ2[M ];

III. PC = P (u)
C + P (c)

C = P (u)
C + p(c)

C ξC [M ], PD = P (c)
D = p(c)

D ξ2[M ];

IV. PC = P (u)
C , PD = P (u)

D + P (c)
D = P (u)

D + p(c)
D ξ2[M ];

V. PC = P (u)
C + P (c)

C = P (u)
C + p(c)

C ξC [M ], PD = P (u)
D ;

VI. PC = P (c)
C = p(c)

C ξC [M ], PD = P (c)
D = p(c)

D ξ2[M ];
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VII. PC = P (c)
C = p(c)

C ξC[M ], PD = P (u)
D ;

VIII. PC = P (u)
C = P (u)

C , PD = P (c)
D = p(c)

D ξ2[M ];

IX. PC = P (u)
C , PD = P (u)

D .

Case I is the case with two dissociation reactions from level K and N0 respectively,
running in unimolecular and collisional channels. Cases II and III have one reaction
with molecules on one of the levels and dissociation from another level. Cases IV
and V represent dissociation from both levels K and g0, and one of the reactions is
purely unimolecular. Case IV has two chemical reactions of the molecules on levels
K and g0 and components C and 2 respectively. Analogous are the cases VII and
VIII. Representative of case IX can be two reactions of isomerization.

Here considering high pressure limit we assume that [M ] > [M ]c. For low pressure
limit we assume that [M ] < [M ]c if [M ]c is defined and nonzero.

Let us start with case I. We use the following expressions

cg ≈ c′g[M ]−1, C0 ≈ C ′
0[M ]−1,

dg = d′g[M ]−1, d̂gm ≈ d̂′gm
[M ]−1, D0 = D′

0[M ]−1.

(68)

Corresponding limits for RC,D can be obtained if in expressions (65), (66) we set
PC = P (u)

C + p(c)
C ξC[M ], PD = P (u)

D + p(c)
D ξ2[M ]. Then for the low pressure limit one

obtains

R0
I C0 = − ξ1χK

Q1 0c′K − (C ′
0 −D′

0)χK
[M ]2,

ΔI C0 =
(c′K −Q−1

1 0 (C ′
0 −D′

0)χK)(c′g0
− c′Kχ

−1
K χg0)

d′g0
(c′K − C ′

0Q
−1
1 0χK) +Q−1

1 0D
′
0(c′g0

χK − c′Kχg0)
,

(69)

For [M ] < [M ]c factor ΔI D0 vanishes and thus reaction D is blocked.
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For the high pressure limit the partial reaction rates and Δ-factors behave as follows

R0
I C∞ = − ξ1p

(c)
C ξCχK

Q1 0

(
1 + p(c)

C ξC
(
c′K −Q−1

1 0 (C ′
0 −D′

0)χK

)) [M ]2,

ΔI C∞ = S−1
0 I ∞

(
1 + p(c)

C ξC
(
c′K − (C ′

0 −D′
0)Q

−1
1 0χK

))

×
(
1 + p(c)

D ξ2
(
c′g0

− c′Kχ
−1
K χg0

))
,

S0 I ∞ = 1 + p(c)
D ξ2

(
c′g0

− C ′
0χg0

Q1 0

)
+ p(c)

C ξC

((
1 + p(c)

D ξ2d
′
g0

)(
c′K − C ′

0χK

Q1 0

)

+
D′

0

Q1 0

(
p(c)

D ξ2
(
c′g0
χK − c′Kχg0

)
+ χK

))
,

(70)

R0
I D∞ = − ξ1p

(c)
D ξ2χgm

Q1

(
1 + p(c)

D ξ2(c′gm
− C ′Q−1

1 χgm)
) [M ]2,

ΔI D∞ =
1

ε(c)
c SI ∞

(
1 + p(c)

D ξ2

(
c′gm

− C ′χgm

Q1

))(
ε(c)

c − p(c)
C ξCc′K

)
,

(71)

where SI ∞ is the same as S0 I ∞ in (70), but with all parameters without subindex 0.
Thus at high pressures and when p(c)

C ξCc′K > ε(c)
c reaction D is blocked, while if

p(c)
C ξCc′K < ε(c)

c factor ΔI D∞ has finite and nonzero limit. In the latter case subindex
0 should be also discarded in formulas (70).

Now we consider the case when only the collisional path for the reaction C is allowed,
that is the case II. The results are obtained by substituting PC = P (c)

C = p(c)
C ξC[M ]

and PD = P (u)
D + P (c)

D = P (u)
D + p(c)

D ξ2[M ] into expressions (65), (66). Using the
relationships (68) for low pressure we have

R0
II C0 = R0

I C∞,

ΔII C0 = S−1
0 II 0

(
1 + p(c)

C ξC(c′K −Q−1
1 0 (C ′

0 −D′
0)χK)

) (
c′g0

− c′Kχ
−1
K χg0

)
,

S0 II 0 = p(c)
C ξC

(
d′g0

(
c′K −Q−1

1 0C
′
0χK

)
+Q−1

1 0D
′
0

(
c′g0
χK − c′Kχg0

))

+c′g0
−Q−1

1 0C
′χg0,

(72)

For p(c)
C ξCc′K ≥ ε(c)

c the reaction D is blocked, as previously, while for the opposite
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case one should use the following expression

R0
II D0 = − ξ1χgm [M ]2

Q1c′gm
− C ′χgm

,

ΔII D0 = S−1
II 0

(
c′gm

− C ′χgm

Q1

)⎛⎝1 − p(c)
C ξCc′K
ε(c)

c

⎞
⎠,

(73)

and replace g0 by gm in other expressions. SII 0 is the same as S0 II 0 in (72), but
with all parameters without subindex 0.

For high pressure we obtain the same results as in case I.

R0
II C∞ = R0

I C∞, ΔII C∞ = ΔI C∞, R0
II D∞ = R0

I D∞, ΔII D∞ = ΔI D∞. (74)

It is seen that when P (u)
C = 0, the partial reaction rate R0

II C has the same structure
in the whole range of pressures. It should be also mentioned that depending on the
intensity of the collisional part of reaction C, factor ΔII D∞ behaves differently, as
in case I.

In the opposite case with P (u)
D = 0 at low pressure limit we obtain

R0
III C0 = R0

I C0,

ΔIII C0 =
(c′K −Q−1

1 0 (C ′
0 −D′

0)χK)
(
1 + p(c)

D ξ2(c′g0
− c′Kχ

−1
K χg0)

)
d′g0

(c′K − C ′
0Q

−1
1 0χK) +Q−1

1 0D
′
0(c′g0

χK − c′Kχg0)
,

(75)

and reaction D is blocked. For high pressure it is as in case I:

R0
III C∞ = R0

I C∞, ΔIII C∞ = ΔI C∞, R0
III D∞ = R0

I D∞, ΔIII D∞ = ΔI D∞, (76)

and again for ΔIII D∞ there are two cases depending on p(c)
C value.

Now let us remove the collisional paths of the reactions, starting with the case IV,
when P (c)

C = 0. For the low pressure limit we have the same results as in case I:

R0
IV C0 = R0

I C0, ΔIV C0 = ΔI C0, (77)

with reactionD blocked. It is explained by the fact that at low pressure the collisional
mechanism is negligible.
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At the high pressure limit one obtains

R0
IV C∞ = −P (u)

C

ξ1χK

Q1
[M ], ΔIV C∞ =

1 + p(c)
D ξ2

(
c′gm

− c′Kχ
−1
K χgm

)
1 + p(c)

D ξ2
(
c′gm

− C ′Q−1
1 χgm

) ,

R0
IV D∞ = R0

I D∞, ΔIV D∞ = 1.

(78)

If the collisional path of reaction D is closed (P (c)
D = 0), then for low pressures the

picture is the same as in case I:

R0
V C0 = R0

I C0, ΔV C0 = ΔI C0, (79)

with reaction D blocked, while for high pressure one obtains

R0
V C∞ = R0

I C∞, ΔV C∞ = 1, (80)

and reaction D is open only for p(c)
C ξCc′K < ε(c)

c :

R0
V D∞ = −P (u)

D

ξ1χgm

Q1
[M ],

ΔV D∞ = ΔI D∞|
P

(c)
D =0

=
1 − p(c)

C ξCε(c)−1
c

1 + p(c)
C ξC

(
c′K −Q−1

1 (C ′ −D′)χK

) ,
(81)

and g0 should be replaced by gm in expressions for reaction C.

Now let us turn to case VI with only collisional reactions (P (u)
C = P (u)

D = 0). For the
partial reaction rates and Δ-factors one obtains

R0
V I C0 = R0

V I C∞ = R0
I C∞, ΔV I C0 = ΔV I C∞ = ΔI C∞,

R0
V I D0 = R0

V I D∞ = R0
I D∞, ΔV I D0 = ΔV I D∞ = ΔI D∞.

(82)

In this case, one has just has one expression for all these parameters in a complete
pressure range.

Case VII where P (u)
C = P (c)

D = 0, is similar to case II at low pressures:

R0
V II C0 = R0

II C0, ΔV II C0 = ΔII C0, R0
V II D0 = R0

II D0, ΔV II D0 = ΔII D0. (83)

For high pressure, one obtains

R0
V II C0∞ = R0

I C∞, ΔV II C∞ = 1, R0
V II D∞ = R0

V D∞, ΔV II D∞ = ΔV D∞. (84)
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For the opposite case, when P (c)
C = P (u)

D = 0, for low pressures and [M ] < [M ]c
reaction D is blocked and we have

R0
V III C0 = R0

I C0,

ΔV III C0 =

(
c′K −Q−1

1 0 (C ′
0 −D′

0)χK

) (
1 + p(c)

D ξ2
(
c′g0

− c′Kχ
−1
K χg0

))
(
1 + p(c)

D ξ2d′N0

) (
c′K −Q−1

1 0C
′
0χK

)
+Q−1

1 0D
′
0χK

.

(85)

For high pressures one obtains

R0
V III C∞ = R0

IV C∞, ΔV III C∞ = ΔIV C∞,

R0
V III D∞ = R0

IV D∞, ΔV III D∞ = 1.

(86)

Finally, let us consider case IX, where only unimolecular reaction paths are available
(P (c)

C = P (c)
D = 0). For low pressure, reaction D is blocked and one obtains

R0
IX C0 = RI C0, ΔIX C0 = ΔI C0. (87)

For high pressure the corresponding results are

R0
IX C∞ = −n1

P (u)
C χK

Q1
= −P (u)

C X(qe)
K , ΔIX C∞ = 1,

R0
IX D∞ = −n1

P (u)
D χgm

Q1
= −P (u)

D X(qe)
gm

, ΔIX D∞ = 1.

(88)

This analysis shows that only for high pressure and purely unimolecular reactions,
the non-equilibrium vibrational distribution does not affect the relationship between
partial and total rate constants, i.e. the reaction rates are equilibrium. Only for this
case the mass action law is valid. For all other cases a nonlinear dependence of the
total rate constant on the partial reaction probabilities PI , I = C,D means violation
of the mass action law.

Another important conclusion is the effect that arises from the collisional reactions:
If P (c)

C = 0, then ΔD∞ = 1 and R0
C∞ is equilibrium. In this case the non-equilibrium

effects are caused only by the correlations and are all contained in the corresponding
Δ-factors. These factors are determined by the collisional probability P (c)

D . And vice
versa, if P (c)

D = 0, then ΔC∞ = 1 and R0
D∞ is equal to unity.

Possibility of blocking one of the parallel reactions is an important feature of the
non-equilibrium system. From expression (67) for ΔD it follows that the channel D is
blocked when g0 ≤ gm. This is the case in a low pressure limit and when [M ] < [M ]c
and P (u)

C �= 0. For P (u)
C = 0 one has [M ]c = 0 and reaction D is blocked only if
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collisional part of reaction C is rather intensive, i.e. p(c)
C ξCc

′
K ≥ ε(c)

c . Experimental
study of this effect is of great interest.

5 Conclusions.

A general method of derivation of the gas-dynamic equations for non-equilibrium
gas mixtures with internal degrees of freedom [1] was applied to study the effect of
non-equilibrium on reaction rates. Its appropriateness was approved by comparison
with the commonly accepted results on thermal dissociation of a small admixture.
Unlike the previous approaches that could describe only weekly non-equilibrium
situations (due to assumption of smallness of the part of the collisional integral re-
sponsible for the chemical reactions, see [12]) or spatially homogeneous situations for
strongly non-equilibrium situations [6], our method is a consistent extension of the
Chapman-Enskog method for gases with internal degrees of freedom. For the ther-
mal dissociation process the influence of chemical reactions on the gas temperature
has been discovered, that is described by the S-factor and appears in the expression
for corresponding reaction rates. The same is for the exchange processes. For the
parallel reactions this effect cannot be reduced to S-factor. Vibrational distributions
appears to be the linear functions of all reaction rates, and more complex analysis
is needed if these thermal effects are not negligible. This will be done elsewhere.

It is shown that accounting for both unimolecular and collisional channels of reac-
tions significantly changes dependence of the reaction rates on pressure. Presence of
the collisional reaction mechanism leads to a non-equilibrium behavior of reaction
rates even at high pressures.

Under vibrational non-equilibrium conditions reaction rates are complicated func-
tions of the reacting partners characteristics, even in the case of dissociating ad-
mixture in the mixture of inertial gases. Vibrational non-equilibrium causes strong
correlations between reactions passing in parallel. One reaction can inhibit another,
up to a complete blocking. Such correlations mean violation of the mass action law
for the non-equilibrium mixtures. This necessitates reformulation of the chemical
kinetic equations and new methods for their solution. This also makes challenging
the procedure of the extraction reaction rates from experimental results.

Results obtained for the reaction rates confirm our predictions that the non-equilib-
rium affects mostly kinetic terms of the gas-dynamic equations, and not convective
terms [1]. Significant influence of non-equilibrium on reaction rates is observed in
the zero-order approximation, while such an influence on the transport properties
(transport coefficient modification) will occur only in the higher-order approxima-
tion.

We plan to devote our further investigations to deriving of the two-temperature gas-
dynamic equations for non-equilibrium gas mixtures, accounting for the temperature
that characterizes internal molecule energy.
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Appendix A Kinetic equations for chemically reactive gases.

For the distribution function Fα(vα, kα, r, t) normalized to the number density the
kinetic equation for chemically reactive gas mixture can be written in the form
[11,13]

∂Fα

∂t
+ vα · ∇Fα = Iα,

Iα =
|ν|≤2∨|ν′|≤1∑

ν,ν′

∑
kν

∑
kν′

∫ ′ dvν

∫ ′ dvν′W ν
α,ν′ (vα, kα,vν′ , kν′|vν , kν)

×
[ ∏

β∈ν

Fβ

sβ(kβ)
− Fα

sα(kα)

∏
β∈ν′

Fβ

sβ(kβ)

]
.

(A.1)

Here W is the transition probability; ν characterizes the reaction channel: ν =
{ν1, ..., να, ...}, where να is a number of particles of sort α in channel ν; |ν| = ν1 +
...+ να + ... is a number of particles in the channel ν; the summation is done over all
pairs of channels for which the number of particles in the initial or final channel does
not exceed two; sα(kα) is a statistical weight of state kα. Primes over integrals mean
that the corresponding integration is done over different quantum states, aiming
to avoid multiple account of the same states. For instance, if particles i and j are
identical, the integral over velocities should be taken over the part of the velocity
space as follows: ∫ ′

dvαdvα′ =
∫

vα<vα′

dvαdvα′ ,

where inequality should be realized componentwise. Transition probabilities satisfy
the following microscopic reversibility law W ν′

ν (vν , kν |vν′, kν′) = W ν
ν′(vν′ , kν′|vν , kν).

While deriving kinetic equations for the systems with coupled states, the question
concerning the definition of those states (molecules) arises. If only stable states are
considered as coupled states (molecules), then the dissociation is possible only via
the dual collisions, while recombination is possible only via triple collisions. In chem-
ical physics, both in kinetics and in thermodynamics, it is generally accepted that
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particles in metastable states (resonances) with the time-of-life comparable with the
mean free path are considered as molecules. Then it is necessary to consider the dis-
sociation and recombination processes that occur via the intermediate metastable
coupled states. These effects are taken into account in the aforecited kinetic equa-
tions. They are responsible for unimolecular reactions.

This kinetic equation satisfies the H-theorem. To prove it let us introduce the fol-
lowing expression for the entropy production σ of the quantity M which corresponds
to the microscopic function ψα (M = 〈ψ, F 〉)

σM = 〈ψ, I〉

=
∑
α

|ν|≤2∨|ν′|≤1∑
ν,ν′

∑
kα,kν ,kν′

∫
dvα

∫ ′
dvν

∫ ′
dvν′ψαU

ν
α,ν′ (vα, kα,vν′ , kν′|vν , kν) ,

Uν
α,ν′ =

∫ ′ dvν′W ν
α,ν′ (vα, kα,vν′ , kν′|vν , kν)

⎡
⎣∏

β∈ν

Fβ

sβ(kβ)
− Fα

sα(kα)

∏
β∈ν′

Fβ

sβ(kβ)

⎤
⎦ ,

Let us mention that
∫
dvα

∫ ′ dvνψαU
ν
α,ν′ =

1

ν!

∫
dvα

∫
dvνψαU

ν
α,ν′

=
1

να!
∏
β �=α

νβ!

∫
dvα

∫
dvνψαUν

α,ν′ =
1

να!
∏
β �=α

νβ!

∫
dvα

∫
dvνψαUν

α,ν′

=
να + 1

(να + 1)!
∏
β �=α

νβ !

∫
dvα

∫
dvνψαUν

α,ν′ = ν ′′
α

∫ ′ dvν′′ψαUν
ν′′ ,

where ν ′′ = {1α, ν ′}. Using the symmetry of the Uν
ν′′ over identical particle inter-

changing, the last integral can be rewritten as

ν ′′α
∫ ′
dvν′′ψαU

ν
ν′′ =

∫ ′
dvν′′

∑
i∈ν′′

ψα(i)Uν
ν′′ ,

where summation over i means the summation over all particles of sort α of the
channel ν ′′. Hence

σM =
|ν|∨|ν ′′|≤2∑

ν,ν′′

∑
kν

∑
kν′′

∫ ′
dvν

∫ ′
dvν′′ψν′′W ν

ν′′ (vν′′ , kν′′|vν , kν)

×
⎡
⎣∏

β∈ν

Fβ

sβ
− ∏

β∈ν′′

Fβ

sβ

⎤
⎦ , ψν′′ =

∑
β∈ν′′

ψβ.
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Then the H-theorem is proved in a traditional way. The entropy in this case is
defined as

S = −k∑
α

∑
kα

∫
dvαFα (vα, kα) ln

Fα (vα, kα)

sα (kα) e
.

A mixture of dissociating molecules, of noble gases of two sorts and of the dissociation
products is described by the following set of kinetic equations. Equation for the
dissociating species has the form

∂F1

∂t
+ v1 · ∇F1 = I1 = Iu

1 + Ic
1 + Inr

1

=
∑
k4,k5

∫ ′
dv4dv5W

4,5
1 (v1, k1|v4, k4,v5, k5)

[
F4 (v4, k4)

s4 (k4)

F5 (v5, k5)

s5 (k5)
− F1 (v1, k1)

s1 (k1)

]

+
5∑

α=1

∑
k′

α,k′
4,k′

5,k′′
α

∫ ′
dv′

αdv
′
4dv

′
5dv

′′
αW

4,5,α
1,α (v1, k1,v

′
α, k

′
α|v′

4, k
′
4,v

′
5, k

′
5,v

′′
α, k

′′
α)

×
[
F4 (v′

4, k
′
4)

s4 (k′4)
F5 (v′

5, k
′
5)

s5 (k′5)
Fα (v′′

α, k
′′
α)

sα (k′′α)
− F1(v1, k1)

s1(k1)

Fα(v′
α, k

′
α)

sα(k′α)

]

+
∑

k′
1,k′′

1 ,k4,k5

∫ ′
dv′

1dv
′′
1dv4dv5W

1,1
1,4,5(v1, k1,v4, k4,v5, k5|v′

1, k
′
1,v

′′
1 , k

′′
1)

×
[
F1 (v′

1, k
′
1)

s1 (k′1)
F1 (v′′

1 , k
′′
1)

s1 (k′′1)
− F1 (v1, k1)

s1 (k1)

F4 (v4, k4)

s4 (k4)

F5 (v5, k5)

s5 (k5)

]

+
5∑

α=1

∑
k′
1k′′

α,k′
α

∫ ′
dv′dv′′

αdv
′
αW

1,α
1,α (v1, k1,v

′
α, k

′
α|v′

1, k
′
1,v

′′
α, k

′′
α)

×
[
F1 (v′

1, k
′
1)

s1 (k′1)
Fα (v′′

α, k
′′
α)

sα (k′′α)
− F1 (v1, k1)

s1 (k1)

Fα (v′
α, k

′
α)

sα (k′α)

]
.

Here subindex 1 denotes the dissociating species, subindexes 2 and 3 denote the
noble gas species, while subindexes 4 and 5 denote the dissociation reaction products.
Term Iu

1 describes the metastable molecules decay via unimolecular reactions and
their formation due to dissociation products agglomeration. Term Ic

1 describes the
dissociation and recombination reactions occurring in three-particle collisions. It
consists of two items. The first one corresponds to the situation when particles of
sort 1 are formed in the state {v1, k1} during agglomeration (recombination) in three
particle collisions and escape this state during dissociation. In these two reactions any
particle, including 1, can be a collisional partner. The second item corresponds to the
situation when the collisional partner only of sort 1 is considered. In recombination
reaction it can leave the state {v1, k1} and therefore the corresponding term presents
with sign "−". In dissociation the partner-particle can occupy the state {v1, k1} and
therefore contribute to the incoming process. Term Inr

1 describes the nonreactive
dual collisions.
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Equations for noble gases have the form

∂Fα

∂t
+ vα · ∇Fα = Iα = Ic

α + Inr
α

=
∑

k′
α,k′

4,k′
5

∫ ′
dv′

αdv
′
4dv

′
5W

α,4,5
α,1 (vα, kα,v1, k1|v′

α, k
′
α,v

′
4, k

′
4,v

′
5, k

′
5)

×
[
F4(v′

4, k
′
4

s4(k′4)
F5(v′

5, k
′
5)

s5(k′5)
Fα(v′

α, k
′
α)

sα(k′α)
− F1(v1, k1)

s1(k1)

Fα(vα, kα)

sα(kα)

]

+
∑

k′
α,k′

4,k′
5

∫ ′
dv′

αdv
′
4dv

′
5W

α,1
α,4,5(vα, kα,v4, k4,v5, k5|v′

α, k
′
α,v

′
1, k

′
1)

×
[
F1(v′

1, k
′
1)

s1(k′1)
Fα(v′

α, k
′
α)

sα(k′α)
− F4(v4, k4)

s4(k4)

F5(v5, k5)

s5(k5)

Fα(vα, kα)

sα(kα)

]

+
5∑

β=1

∑
k′

β ,k′′
βk′

α

∫ ′
dv′

βdv
′′
βdv

′
αW

β,α
β,α

(
v′

β, k
′
β,vα, kα|v′′

β, k
′′
β,v

′
α, k

′
α

)

×
[
Fβ(v′′

β, k
′′
β)

sβ(k′′β)

Fα(v′
α, k

′
α)

sα(k′α)
− Fβ(v′

β , k
′
β)

sβ(k′β)

Fα(vα, kα)

sα(kα)

]
, α = 2, 3.

Here the first term, Ic
α, describes the collisional dissociation and recombination.

As previously, it consists of two parts. The first one describes the situation when
particles of sort α, playing the role of collisional partners, are formed in the state
{vα, kα} in recombination process and leave this state in the dissociation reaction.
The second one describes the opposite situation. Term Inr

α describes the nonreactive
dual collisions.

Equations for the dissociation products can be written as

∂Fα

∂t
+ vα · ∇Fα = Iα = Iu

α + Ic
α + Inr

α
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=
∑

k1,kβ

∫ ′ dv1dvβW 1
α,β(v1, k1|vα, kα,vβ, kβ)

×
[
F1(v1, k1)

s1(k1)
− Fα(vα, kα)

sα(kα)

Fβ(vβ, kβ)

sβ(kβ)

]

+
5∑

γ=1

∑
kβ ,k′′

γ ,k′
α,k1

∫ ′ dvβdv′′
γdv

′
αdv1W

α,1
α,β,γ(vα, kα,vβ, kβ,v′′

γ, k
′′
γ |v′

α, k
′
α,v1, k1)

×
[
F1(v1, k1)

s1(k1)

Fα(v′
α, k

′
α)

sα(k′α)
− Fα(vα, kα)

sα(kα)

Fβ(vβ, kβ)

sβ(kβ)

Fγ(v′′
γ , k

′′
γ)

sγ(k′′γ)

]

+
∑

k1,k′
α,kβ ,k′′

γ

∫ ′ dv1dv′
αdvβdv′′

γW
α,β,γ
α,1 (vα, kα,v1, k1|v′

α, k
′
α,vβ, kβ,v′′

γ, k
′′
γ)

×
[
Fα(v′

α, k
′
α)

sα(k′α)

Fγ(v′′
γ, k

′′
γ)

sγ(k′′γ)
Fβ(vβ, kβ)

sβ(kβ)
− F1(v1, k1)

s1(k1)

Fα(vα, kα)

sα(kα)

]

+
5∑

γ=1

∑
k′

γ ,k′′
γk′

α

∫ ′
dv′

γdv
′′
γdv

′
αW

γ,α
γ,α

(
v′

γ , k
′
γ,vα, kα|v′′

γ, k
′′
γ ,v

′
α, k

′
α

)

×
[
Fγ(v′′

γ , k
′′
γ)

sγ(k′′γ)
Fα(v′

α, k
′
α)

sα(k′α)
− Fγ(v′

γ , k
′
γ)

sγ(k′γ)
Fα(vα, kα)

sα(kα)

]
,

α = 4, 5, β = 4, 5, α �= β.

Term Iu
α describes unimolecular decay and molecular formation due to dissociation

products agglomeration. Term Ic
α describes the dissociation and recombination re-

actions occurring in the three-particle collisions. It consists of two items (similar to
those described above). Term Inr

α describes the nonreactive collisions.

Appendix B Equations for vibrational population densities.

To solve Eq. (7) we simplify it by assuming that due to short relaxation time both
translational and rotational distributions remain Maxwell-Boltzmann ones (13).
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Then after substituting F (e)TR
α Xα(nα) into collisional integral one obtains

Iα (F ) =
|ν|∨(|ν′|+1α)≤2∑

ν,ν′

∑
kν

∑
kν′

∫ ′
dvν

∫ ′
dvν′W ν

α,ν′ (vα, kα,vν′ , kν′|vν , kν)

×
⎡
⎣ ∏

β∈ν

F (e)TR
β Xβ

sβ
− F (e)TR

α Xα

sα

∏
β∈ν′

F (e)TR
β Xβ

sβ

⎤
⎦ .

Integration over vα and summation over jα gives

Ĩα(Xα) ≡∑
jα

∫
dvαIα (F )

=
|ν|≤2∨|ν′|≤1∑

ν,ν′

∑
kν

∑
kν′

∑
jα

∫
dvα

∫ ′
dvν

∫ ′
dvν′W ν

α,ν′ (vα, kα,vν′, kν′|vν , mν)

×
⎡
⎣ ∏

β∈ν

F (e)TR
β Xβ

sβ
− F (e)TR

α Xα

sα

∏
β∈ν′

F (e)TR
β Xβ

sβ

⎤
⎦

The first term of the collisional integral can be rewritten as

|ν|≤2∨|ν′|≤1∑
ν,ν′

∑
jν ,nν

∑
jν′ ,nν′

∑
jα

∫
dvα

∫ ′
dvν

∫ ′
dvν′W ν

α,ν′ (vα, jα, nα,vν′ , jν′, nν′ |vν , jν,nν)

× exp

[
−e

(T )
ν + e(R)

ν + e(RV )
ν

kT

] ∏
β∈ν

1

Q(RT )
β (nβ)s(V )

β (nβ)
Xβ(nβ)

=
|ν|≤2∨|ν′|≤1∑

ν,ν′

∑
nν

∑
nν′

ηα(α, ν ′)W ν
α,ν′ (nα, nν′ |nν)

∏
β∈ν

Xβ(nβ)

s(V )
β (nβ)

, eν =
∑
β∈ν

eβ .

Here ηα(α, ν ′) is a number of particles of sort α in channel {α, ν ′}, and averaged
vibrational transition probabilities are defined as

W ν
α,ν′ (nα, nν′ |nν) =

∑
jν ,jν′ ,jα

∫ ′
dvαdvν

∫ ′
dvν′

×W ν
α,ν′ (vα, jα, nα,vν′ , jν′, nν′ |vν , jν,nν)

× exp

[
−e

(T )
ν + e(R)

ν + e(RV )
ν

kT

] ∏
β∈ν

1

Q(TR)
β (nβ)

,

(B.1)
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or in more symmetrical way

W ν
ν′ (nν′ |nν) =

∑
jν

∑
jν′

∫ ′
dvν

∫ ′
dvν′W ν

ν′ (vν′ , jν′ , nν′|vν , jν,nν)

× exp

[
−e

(T )
ν + e(R)

ν + e(RV )
ν

kT

] ∏
β∈ν

1

Q(TR)
β (nβ)

.

The second term in the collisional integral has the form

|ν|≤2∨|ν|′≤1∑
ν,ν′

∑
jν ,nν

∑
jν′ ,nν′

∑
jα

∫
dvα

∫ ′
dvν

∫ ′
dvν′W α,ν′

ν (vν , jν,nν |vα, jα, nα,vν′, jν′ , nν′)

× exp

⎡
⎣−e(T )

α,ν′ + e(R)
α,ν′ + e(RV )

α,ν′

kT

⎤
⎦ Xα

Q(TR)
α (nα) s(V )

α (nα)

∏
β∈ν′

Xβ

Q(TR)
β (nβ) s(V )

β (nβ)

=
|ν|≤2∨|ν|′≤1∑

ν,ν′

∑
nν

∑
nν′

ηα(α, ν ′)W α,ν′
ν (nν |nα, nν′)

Xα

s(V )
α (nα)

∏
β∈ν′

Xβ

s(V )
β (nβ)

.

Here the microscopic reversibility principle

W ν
ν′ (vν′, jν′ , nν′ |vν , jν,nν) = W ν′

ν (vν , jν,nν |vν′ , jν′, nν′) , (B.2)

was used.

Thus the collisional operator applied to the vibration populations has the form

Ĩα (X) =
|ν|≤2∨|ν|′≤1∑

ν,ν′

∑
nν

∑
mν′

ηα(α, ν ′)

×
⎡
⎣W ν

α,ν′ (nα, nν′|nν)
∏

β∈ν

Xβ

s(V )
β (nβ)

−W α,ν′
ν (nν |nα, nν′)

Xα

s(V )
α (nα)

∏
β∈ν′

Xβ

s(V )
β (nβ)

⎤
⎦ .

Using definition (B.1), the energy conservation law eν = eν′ (see (11), eν =
∑
β∈ν

eβ),
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and the equality (B.2), one can write

W ν
ν′ (nν′|nν) =

∑
jν

∑
jν′

∫ ′
dvν

∫ ′
dvν′W ν

ν′ (vν′ , jν′, nν′ |vν , jν,nν)

× exp

[
−e

(T )
ν + e(R)

ν + e(RV )
ν

kT

] ∏
β∈ν

1

Q(RT )
β (nβ)

=
∑
jν

∑
jν′

∫ ′
dvν

∫ ′
dvν′W ν′

ν (vν , jν,nν |vν′, jν′ , nν′)×

exp

⎡
⎣−e

(T )
ν′ + e(R)

ν′ + e(RV )
ν′ +

(
e(0)ν′ + e(V )

ν′
)
−
(
e(0)ν + e(V )

ν

)
kT

⎤
⎦ 1∏

β∈ν
Q(TR)

β (nβ)

= W ν′
ν (nν |nν′) exp

⎡
⎣−

(
e(0)ν′ + e(V )

ν′
)
−
(
e(0)ν + e(V )

ν

)
kT

⎤
⎦
∏

β∈ν′
Q(TR)

β (nβ)

∏
β∈ν

Q(TR)
β (nβ)

.

(B.3)

This equality is called a detailed balance relation. It has nontrivial dependence on
the vibration levels due to the ratio of the statistical sums. This ratio holds true
for the case without chemical reactions but for coupled rotations and vibrations.
Without such coupling (e(RV )

α = 0, s(RV )
α = 1) relation (B.3) reduces to (18).
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