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Abstract

We study non-equilibrium effects caused by dissociation and other chemical re-
actions in gas mixtures. For that, we employ a general algorithm for deriving a
uniform asymptotic solution of the kinetic equation for spatially inhomogeneous
reactive gas mixtures developed earlier by the authors. We show that chemical re-
actions lead to quasi-stationary vibrational distribution function that differs from
the quasi-equilibrium one. Under such conditions, the approach based on introduc-
tion of reaction rate constants shall be revised. We obtained expressions for reaction
rates of pure unimolecular processes that have a dependence on pressure in good
agreement with the theory of unimolecular reactions. Considering both unimolecu-
lar and collisional mechanisms of elementary reactions leads to new dependencies
of reaction rates on gas pressure. Parallel reactions are considered (when one mole-
cule reacts with several others), and a strong correlation between these reactions
is demonstrated in the non-equilibrium case. This correlation can be manifested as
blocking of one reaction by another. It violates the mass action law.

BJINSHUE KOJIEBATEJIbHOI HEPABHOBECHOCTU HA
CKOPOCTU XUMNYECKUNX PEAKIIVIA

Uccnenytorcest HepaBHOBecHBIE 3 ]hEKTHI, 00yCJIOB/IEHHBIE JTUCCOIUAIIAEN U JIPYTHU-
MU XUMUYIECKUMHU PEAKITUSIME B Ta30BbIX cMecsx. Jjis 9Toro mcrmosn3yercs oomumit
AJITOPUTM TTOCTPOEHUS ACHUMIITOTHYECKOTO PEIeHNsT KNHETUIECKOTO YPaBHEHUS JJI
[IPOCTPAHCTBEHHO HEOHOPOJIHBIX PEArHPYIONIUX I'a30BbIX CMecell, pa3paboTaHHbBIN
aBTopamu panee. [lokazano, 4To XUMUYECKIe PEAKIINY TPUBOJIAT K KBa3UCTAI[MOHAD-
HOMY KOJ1e0aTeIbHOMY PACIIPEJIEIEHUIO, OTINYIAIOIEMYCsi OT KBa3upaBHOBECHOTrO. B
9TUX YCJIOBUAX IIOJXOJ], OCHOBAHHLI Ha BBEJICHUU IMOHATUA KOHCTAHTBHI CKOPOCTH
peakuu HyK1aeTcs B epecMorpe. [lojiyueHbl BoIpaskeHus Jjist CKOPOCTEN peaKIiuii
YUCTO MOHOMOJIEKYJIAPHBIX IIPOIECCOB, KOTOPbIE NMEIOT 3aBUCUMOCTL OT JIABJICHU,
XOPOIIIO COTJIACYIOILYIOCS C TeOPHeil MOHOMOJIEKY/ISPHBIX PeaKIuil. ¥ 4eT KaK MOHO-
MOJIEKYJIAPHOTO, TaK ¥ CTOJKHOBUTE/JHLHOIO MEXaHU3Ma 3JIEMEHTAPHBIX PEaKIUil Be-
JIET K HOBOH 3aBHCHMOCTU CKOPOCTEll peakIiuii OT jaBJjieHusi. PaccMOTpeHBI apaJi-
JieJIbHbIe peakinu (KOrjia OJ[HA MOJIEKY/Ia Pearupyer ¢ HeCKOJIbKUMU JIPYIHMHU MO-
JIEKyJIaM1), ¥ [OKa3aHa CHJIbHAsT KOPPEJISIIUs MEXK/y TUMU PEaKIUsIMU B HepaB-
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HOBECHOM CJIydae. DTa KOPPEJSIHs MOYKET TPOSIBJISITHCS KaK OJIOKMPOBAHUE OTHOM
PEeaKIy JIPYToii. DTO sSIBJACHUE BEJET K HAPYIICHUIO 3aKOHA JEHCTBYIOIIIX MACC.
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1 Introduction.

In our previous paper [1] we developed a new general approach for deriving gas-
dynamic equations from kinetic ones for reactive gases. This approach is based on
elimination of fast variables and reduction of the system description. The fast vari-
ables are the parts of distribution functions. Their behavior is governed by the equa-
tions derived from generalized Boltzmann equations by change of variables. The
reduced description is done in terms of slow variables for which the gas-dynamic
equations are derived. The resulting equations contain extra terms in comparison
with traditional ones. Determination of slow variables is based on the concept of
so called approximate summational invariants (that include the exact ones). They
determine a complete set of slow variables. Here, using this approach, we are going
to describe some non-equilibrium effects in reactive gases. The non-equilibrium ef-
fects are the distinctions of new gas-dynamic equations from those obtained with
quasi-equilibrium distribution functions. We define the quasi-equilibrium distribu-
tion functions as functions that maximize the entropy density of the system for fixed
gas-dynamic variables.

Analysis of the gas-dynamic equations obtained in [1] shows that all non-equilibrium
effects can be subdivided into three groups. The first group are the effects caused by
the perturbation of quasi-equilibrium distribution function by the physical-chemical
processes. Only these effects remain in the spatially homogeneous case. The sec-
ond group consists of the terms proportional to the velocity divergence that arise
in the expressions for the corresponding reaction rates. These effects are caused by
expansion and compression of the gas. The first and second groups are represented
in the zero order approximation. In the first order approximation the third group of
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non-equilibrium effects appears. It consists of terms in the expressions for the reac-
tion rates, that are proportional to the scalar bilinear combinations of gas-dynamic
variables gradients. Here we consider only the effects of the first group. Due to the
additive contribution of all these terms to the gas-dynamic equations, they can be
studied separately. The effects from the second and third group have been estimated
in [2,3,4].

In this paper we study the non-equilibrium effects in chemical reactions induced
by non-equilibrium vibrational distributions caused by the chemical reactions them-
selves. These effects are of the highest importance because they significantly influence
the reaction rates, up to their vanishing. In Section 2 we calculate the non-equi-
librium dissociation rate for a small admixture of dissociating molecules in noble
gas mixture in a one-temperature regime. It was previously calculated in the theory
of unimolecular reactions [5,6], but only for unimolecular dissociation mechanism.
Unlike the previous treatments, both unimolecular and collisional mechanisms of
dissociation are considered here. This leads to new results concerning the depen-
dence of the dissociation rate on the gas mixture pressure. Generalization of such
system description for the spatially inhomogeneous case is discussed. A case of ar-
bitrary concentration of the dissociating gas is also studied. An iterative procedure
for the distribution function and reaction rates calculation is proposed. In section 3
the peculiarities of the exchange reactions’ pressure behavior is briefly considered.
In Section 4 more complex system with two parallel chemical reactions is analyzed.
The effect of interdependency of different reactions in the non-equilibrium case is
shown. It means the violation of the mass action law. This makes it very difficult to
obtain reaction rates from experimental data. Appendix A contains expressions for
the collision integrals. It is shown that the kinetic equation with these integrals sat-
isfies the H-theorem. In Appendix B equations for vibrational population densities
are derived.

2 Thermal Dissociation Reactions.
2.1 State-of-the-art.
Let us consider the generalized Boltzmann equation

0F,
ot

+ve-VF, = é L(F). (1)

Here F,, I, and v, is the distribution function, the collisional integral and the
velocity of the molecule of sort «, ¢ is the ratio of characteristic time of inelastic
process to characteristic gas-dynamic time. Slow variables are introduced as

L= (i F), ) = 5% [dvata (Varka) 9o (Varka) . (2

o ko
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Here k. are quantum numbers of species o and ); is the set of approximate sum-
mational invariants (ASI) that is defined by the condition

(i, I(F)) <O(e). (3)
As a result the distribution function can be treated as a function of ¢, r and I'; and

: : o : 0F, OF, OF, oT';
time and spatial derivations should be rewritten as 2 o +3 ar, ol and

Fy : —y :
VF, — VF,+ >, %Vfi respectively. Multiplying eq. (1) by 1; and calculating

the scalar products we obtain the equations for I';. Substituting them into the last
equation we get

oF, 1 M
at_2< Z

i=1 L

M OF,
= 01 () ) =V F 3 G2 (V- (vt F) = v- 9T).
i=1 4

Here and further all time and spatial derivations correspond to the direct time
and spatial co-ordinate dependence of the corresponding functions. This equation
coincides with the commonly used only when all ¢); are exact summational invariants
(ESI). It shows the main difference between the systems that are described by slow
variables originated from exact and approximate summational invariants. Then it is
convenient to represent F, = F°({T;}) + ®,, where the first item depends only on
slow variables.

Following the formalism of our previous paper [1], we choose FO = F{)(I'y, ... . Ty),
where quasi-equilibrium distribution functions F(9¢) maximize the entropy density
for a fixed set of slow variables: F(9) = exp (ln Sa (ko) = M yithia (Va, ka)) Here
Sa(kq) are corresponding statistical weights, v; are determined by the relations I'; =

Uy, F (qe)> and ®, should satisfy relations (1, ®) = 0. Equations for slow variables
then have the form

G S (P ) T (P e

Further we follow the methodology of section 4 presented in [1], where a simplified
case is considered with a "week" non-equilibrium situation when &, function is
assumed to be of the order of . For the one-temperature flow F(%) is a Maxwell-
Boltzmann distribution function. It should be mentioned that the collisional integral
I,(F) calculated with F(% does not vanish since this distribution contains not only
exact summational invariants.

In the dimensionless form, the equation for the lowest order correction for the dis-
tribution function, ®© (see Eq (22) in paper [1]) can be written as

1 M OF )
/ (ge) o) _ _~ qe
iae (FU9) 00 = 6JF((16) ( ) + Z o,

[v VI; — V- <v¢i, F@e)ﬂ . (5)
Here summation over i denotes the summation over all slow variables (2), Ji(G) is

4
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the modified collision operator Jp(G) linearized over G, and

M (ge)
T (6) = 1(6) = 3= T 1(G). )

As it was discussed in [1], from the structure of the equation (5) it follows that ®©
can be represented as a sum of terms of three types

1
PO = cI)ﬁ) V u -+ é(o) (caca — gci) Vu + ®4a c, - VE

—|—Z<I>maca V n; + Z Pr,oCq - VI
i=1 i=N+5

The first term, @g, is independent on the gas-dynamic variables gradients and we
call it a scalar one. The second one, containing @522, is proportional to the mixture
mass velocity divergence. The terms of the third type are proportional to the linear
combination of gradients of gas-dynamic variables. Due to such an additive structure,
in this paper we consider only the scalar part responsible for the physical-chemical

processes. The corresponding equation for the dissociating gas has the form
e 0 1 e
Tpgwe (") @14 = = g (R™). )

The terms of the second and third types are responsible for the spatial inhomogeneity
effects. Considering these effects makes the proposed method generic, overcoming the
limitations of all the previous approaches describing only the spatially homogeneous
situations [6,8].

To check the method, we start with the well studied problem of a small admixture of
dissociating molecules in noble gas mixture. The kinetic equations for such a mixture
have the form

OF
5 Vi VE =L=I I+ 1", (8)
OF,

VP, =1, a=2..5 9
BT Vv o 5 9)

Here F,, I, and v, is the distribution function, the collisional integral and the veloc-
ity of the molecule of sort «, subindex 1 denotes the dissociating species, subindexes
2 and 3 denote the noble gas species and subindexes 4 and 5 denote the dissoci-
ation reaction products. The first term in the RHS of equation (8), I}, describes
the metastable molecules decay via unimolecular process and their formation due to
dissociation products agglomeration. The second term, I, describes the direct dis-
sociation and recombination reactions occurring during the three-particle collisions.
The third term, I7", corresponds to the nonreactive dual collisions. The detailed
representation of all collision integrals is adduced in Appendix A.

For a small admixture of dissociating molecules, the set of equations (8)-(9) can
be simplified. The concentrations of these molecules and dissociation products are
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small, therefore the collisions of these molecules and dissociation products with each
other can be neglected. This leads to the following simplifications of the set of
kinetic equations: recombination in terms I}* and I{ (proportional to FF5 product)
is omitted. The summation in I7" and in I is reduced to a = 2,3. That means
that only the collisions of admixture with noble gas particles are considered. In
equations for noble gases (a = 2,3) only collisions of these gases among each other
are considered. Distributions of dissociation products (o = 4,5) are assumed to be
Maxwell-Boltzmann and corresponding equations are omitted.

2.2 Small concentration of dissociating molecules.

Before solving equation (7) let us chose the terms in which the system will be
described, namely the list of slow variables. According to the definition (2), they
are defined via the set of approximate summational invariants (ASI) (3), that in
turn are determined by the small parameter €. This parameter we define as the ratio
of the characteristic chemical time, 7., to the gas-dynamical time, 75. The latter
is determined by the flow parameters 7 = L/U, where L ~ min; {I';/ max |VT}|},
and U = ¢(1+ 9) is the gas-dynamic velocity scale. Here ¢ is sound speed, S = u/c,
and u is the gas-dynamic velocity [1]. While studying the one-temperature flow, one
assumes that the following ASI satisfy condition (3)

601,17 MaVa, B&T) (Va) + egnt)(ka)a (10)

where d, 5 is a Kronecker symbol, e(I) = m,v?2/2 and ™ are translational and
internal energies of the molecules of sort a respectively, and k, are the quantum num-
bers determining the internal energy of the molecule. Corresponding gas-dynamic
variables defined according to (2) are number densities of species, mean mixture
momentum and mean total energy.

For molecule energy and statistical weight we use expressions

ea(vaa ka) = 6((39) + eévT) (Va) + egnt) (jcw Qa)>

e (for Go) = €9 (o) + €Y (o Go) + €8 (ga),
(11)

6((1713‘/)(\700ja7 Qa> = G&T) (Va) + e&R) (ja) + e((va)(jaa Qa)a

Sa(ka) = 8((ZVR) (ja)S((JJRV) (.jcw QQ)S(()V) (qa)7

where ko = (Ju, o), € is the minimum of the potential energy and T', R, and
V' denotes translational, rotational and vibrational degrees of freedom respectively.
While solving equation (7) we shall neglect the perturbations of Maxwell-Boltzmann
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distributions for translational and rotational degrees of freedom for all components.
Then the distribution functions can be written as

Fa = Fo(zqe)TRXOn (12)
where
PRy gy = S U0)5e e Ga) T 6 (Ve o o)
Q8 (q) _ T
(13)
(TRV) . 1
Q(TR Qa = /dva a )(ja’qa)exp €a (Z%a]aaC]a)

F,, is normalized to the number density n,, of particles of sort . F{%¢) 7% is normalized
to the unity. Thus we have Y, [dv.F, = X4(¢a) and X,(qa) can be interpreted as
a vibrational population density. Further following tradition we shall write X, (qq) =
X,

aqot

Now let us consider equation (7). For simplicity in this article we study the case
of uncoupled rotation and vibration (e{*)(j,,q) = 0) and restrict ourselves with
consideration of diatomic molecules when s() = 1. After substitution of functions
(12) into equation (7) and integration over v; and summation over j; one obtains an

equation for Xl(?q),l => / dvlq)g?i (v1,q) (see Appendix B). While calculating the

1
scalar product in the r]nodiﬁed collisional operator (6) the specific set of ASI (10)
should be taken into account. Two last functions are exact summational invariants
which means that the scalar product in (6) is non-zero only for terms containing
derivations over number densities of species '), = n,. Corresponding products lead
to the terms containing reaction rates

Ro = (0ap, T (FS)).

For non-reacting species (2,3 in our case) d,5 is an exact summational invariant
and therefore corresponding rates vanishes (Ry = R3 = 0).

For further analysis we will account presence of other exact summational invari-
ants, namely the total number of atoms in all species. Let us denote molecules of
different species as Ay, ..., Aq, ..., Ay, and the atoms (elements), that are the parts
of molecule A, as A,, & = 1,..., K. Then the molecule can be represented as
Ca1Aa s s Gk Aa i, Where (, is the number of atoms of sort & in the molecule
of sort a (for those molecules that don’t contain element k, (,r = 0). Since the
number of particles of each chemical element is kept constant during the chemical
reactions, linear combinations of ASI 35 (51045 are exact summational invariants
for k = 1,..., K [7]. As they are the expressed via ASI, they do not produce new
gas-dynamic variables, but leads to K linear relations between chemical reaction
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rates that reflects the chemical elements conservation

> CapRa =0, k=1,..K. (14)

After multiplying this equation over atomic mass p; and summation over elements
one obtains the mass conservation law (m, = > Cakftk)

> maRy = 0. (15)

For our case of dissociation, this leads to two additional relations
Ri+ R, =0, R+ R;=0.
that in turn leads to the relation Ry = R; = —R; and is used in our following

analysis. As a result the term that contains the derivations over number densities
has the form

(axl,n C0Xi, 09X,

anl 877,4 anS ) R1 = Sl(Xl,n)Rl- (16)

Summarizing all previous reasonings and assuming only one-quantum vibrational
transitions, one gets the following set of dimensionless equations

1,q

€ (_(1 - 5q,0)jq—1(X(0)> + (1 - 5q,qm)jq(X( )) P X(O) S(X(qe)>R(O)>
(17)
= (1 = 0,0)Jq-1 (X)) — (1 = 00,0, )o(X ) + Py g X% + S(X{%)) R@),

jq (X> = Pq+1,qX1,q+1 - Pq7q+1X17qv

where ¢, is the maximum vibrational quantum number. Here and further for sim-
plification of notations we omit the last subscript 1 in X 1(?61)71, in S and in Ry, and by
definition

A0 = (a1 () = = § iy

1,9

RO = (5,,, 1" (Fl4)) 90 = — qzmo P,ax
=

where P, 4 are the dissociation probabilities of the molecule in vibrational state g.

FPog = Z Z Z /dvadvldv dvlF(qe TRF ae) TR

a=2 j,j' ke, k!,
i#i’

1, / / /
xWin (Vi k1, Vo, ka| VY, KL VL EL)

) o
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are the averaged vibrational-translational (V'T') transition probabilities and W are
transition probabilities. They satisfy the detailed balance relation (see Appendix B)

V)¢ (V)
€ — €
Pq,q/ — qu,q eXp (_ 1 (q) 1 (Q)> , (18)

Quasi-equilibrium vibrational population by definition is represented as

(ge) va) (q) &
Xig =mxe/Qu xg=ewp |~ | = > Xos (19)
q=0

where () is the vibrational statistical sum of molecules of type 1.

By setting in (17) X 4 eX© = X R@) + cRO) = R and transforming to
dimensional variables we obtain

(1= 0g,0)Jq-1(X) = (1 = 04.4,,) o (X) + PyaX14 + S(Xl(?qe))R =0. (20)

By summing equation for ¢ = 0 and equation for ¢ = 1, and repeating this procedure
for ¢ = 2, etc., we obtain the recurrence relation
q
Ja (X) =3 (PraXa, + RS(X()) =0, q=0,.,qm— 1.
r=0

Summation of all the equations leads to the expression for the total dissociation
rate R

qm
R=-Y P.uXi,. (21)
r=0

Here the normalizing relationships Y ¢, Xl(?qe ) = ny and S(n;) = 1 are taken into
account. Relationship (21) means that the set of equations for X, is degenerate
and normalizing relation is used further for closing the problem.

For further algebra simplification we make the assumption that the dissociation
occurs only from the highest vibration level g, so that P, s = 0,4, Py..d [6]. As a
result the recurrence relations are reduced to

q
G (X) = STRS(X{) =0,  g=0,.qm— 1, (22)
r=0

and the sum in expression (21) is reduced to the only one last item.

From equations (22) one obtains

X17q_|_1 = ale,q ‘|‘ bq, (23)
Pyqt1 IS (ge) R
a, ==, = RS(X{%)) = ———5(0W),
! Pq+1,q ! Pq+1,q 7;) ( b ) Pq+1,q ( )

9
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ZX”, Q) =pn,,  SOUm) =1.

Taking into account the detailed balance relationships (18), the expression for a, can
be rewritten in the form a, = x,+1/x,- Solution of the chain of recurrent equations
can be expressed as

X17q+1 H CLer ,0 + Z b H Ay, (24)

s=0 r=s+1
thus
-1 (r)
Xq = Xq s©")
Xi1,=""X10+ Rcg, Cg= Yy ———-—= 25
ha X0 o I ! r=0 Xr+1 PT—H,T ( )
X0 is determined from the normalization condition:
Xq _ G
ZXLq ZXXm—I-RZcq —X10+RC’
0
that gives
qm
Xl,O:XO (nl_RO)Ql_la Ozch'
=1
As a result
Xq Xq
Xi,=n +R|c,—C 26
Klon l Qll (26)

Finally, using this vibrational distribution function, for dissociation rate (21) we
obtain
PQm,dTLlXQle_l

= _1 + P, 4 [cqm — Cxmefl}

(27)
LX)

1,gm

L+ Py [Cn — CX{ony |

This expression slightly differs from that obtained by Stupochenko et al [6], and
coincides with it if the normalization factor is accounted with the same accuracy
as in [6]. It means that C'y,,,/Q: is neglected in comparison with ¢, , and S(O™)
are replaced by ©)/n;. S-factor for the dissociation reactions (see (16)) can be
represented as

P

qm;

(qe) n (e(v)( ) — E(V))
(ge) Lg t\@a '\
S(X1%) = o (1 + T S(ln(kT))) (28)
where B Zel l,g °) .

10
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It reflects the chemical reaction affect on the temperature and will be analyzed in
more details elsewhere.

Substituting expression (27) into (26), after some algebra one obtains

n (Xq + qu,d(cqqu - Cqum)) ‘ (29>

Xl,q =

From this expression one can see that in the limits of low and high vibrational
quantum numbers ¢ this distribution is close to Boltzmann distribution with the
same temperature, but with different normalizing factors, with the ratio of 1 +

qu,dcqm‘

Now let us analyze the expression (27) in the limits of low and high pressure taking
into account that the vibrational transition probabilities are proportional to the
number densities of the noble gases

Pyg1 = Pyg-1na + Phg-1ns = [M] (P((fga& + pgq&) : (30)

Here ng, [M] = Y414, & (@ = 2,3) are number densities of the noble gases, total
number density, and number concentrations (n, = &,[M]) of noble gases respec-
tively. Then ey ~ ¢y[M]™!, C ~ C'[M]™!, where primed parameters are pressure
independent. Besides, let us represent the dissociation probability as a sum of proba-
bilities for unimolecular and collisional process that correspond to collision integrals
I™ and I°¢ of equation (8) respectively

u c u c u ¢,2)
Ppa= Pq(,d) +Pq(,cg = Pq(,d) +p¢(1,¢)1[M] = Pq(,d) (pf,d ) ‘1“]9 €3> [M], (31)

where the probability of unimolecular decay is independent of the gas density, while
collisional probability is proportional to [M]. After substitution of formulas (30) and
(31) into the expression for dissociation rate (27) for low pressure limit ([M] — 0)
one obtains )
§1Xq Ql_ 2
Ry = — ” —[M]". (32)
Cé]m - C/XQle !

While deriving the last expression it was assumed that Pq(ffi) # 0. That means that the
rate (32) is determined by the unimolecular mechanism. As it was already mentioned
in [6], the reaction rate in this limit does not depend on the dissociation probability.

For high pressure limit ([M] — o) expression (27) transforms to

&quQl_l[ ]

Ry = — .
L+ (i + P06 (¢, = Can Q1Y)
(33)
(e2) (e3) pY,
(Pq,;,dfz +Pq,;,d§3) [M] + 2 _

L+ (p2h + P iés) (¢, = C'xn Q1)

11
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The collisional part of the dissociation probability P](Vf )d is disregarded by the majority
of investigators. In this case R, transforms to the equilibrium one which equals to
P](\}ft)ix ~NQi'ni. As we can see from (33), it is not the general case. It can be explained
as follows. For the high pressure limit the collisionally induced processes prevail
over the unimolecular ones (see (31)). At the same time the ratio of the collisional
reaction rate and the vibration relaxation rate is pressure independent, therefore it
does not vanish at high pressures. It should be pointed out that there is no reason
for neglecting the collisionally induced processes.

As pressure grows, the thermal dissociation mechanism changes from the unimolec-
ular one to the collisional one.

Thus the approach suggested in [1] allows to reproduce the following well-proved
fact of the chemical physics: the dissociation reaction mechanism is modified when
passing from low to high pressures [5,9]. This allows to conclude that from the phys-
ical point of view it is an adequate generalization of the Chapman-Enskog method
for the gases with internal degrees of freedom.

One more feature of the dissociation process should be mentioned here. Conven-
tional expression for the dissociation rate in the presence of two noble gases is
R = —Ksnony — Ksngng, where Ky and K3 are the rate constants in gas 2 and
in gas 3 respectively. On the other hand, from equation (27) with the probabil-
ity (30), it follows that non-equilibrium rate depends on the noble gas density
in a much more complicated form. This means that in non-equilibrium situation
(P, a(cq, —CX l(?qerlnl_l) > 1) the reaction rate R is not a linear function of the mix-
ture species concentrations and in general could not be obtained from the individual
data for different component rates. It should be mentioned here that both ¢,, and
C' are complex functions of noble gas concentrations.

2.8 Arbitrary concentration of dissociating molecules.

If the concentration of dissociating molecules is not small the vibration-vibration
(VV) energy transfer as well as recombination should be taken into account [8|.
Here we consider only a one-temperature case.

We describe the system in terms of gas-dynamic (slow) variables: species densities,
mean bulk velocity, and mean total mixture energy. We assume that the perturba-
tion of the translational-rotational distribution function of the dissociating gas is
negligible, therefore the Maxwell-Boltzmann distribution for them can be used. For
simplicity, we use the assumption that the perturbation of the Maxwell-Boltzmann
distribution of all dissociation products is also negligible. Then equation (7) can be
reduced to the equation for vibrational population densities X; , of species 1, as it
was done in Section 2.2. The vibrational collisional operator II(V) (operator [; in-
tegrated over velocities v and summed over rotation quantum numbers j;) can be

12



DusuKo-XxUMHUYECKasi KWUHETUKA B Ta30BON JIMHAMUKE www.chemphys.edu.ru/pdf/2011-06-16-001.pdf

written as

where superscripts ch, VT and V'V denote chemical reactions (both unimolecular
and collisional), to vibration-translation and vibration-vibration transitions respec-
tively. In this case

Y

Il(,‘gT) = Z (PT,le,r - Pq,er,q) )

r#q

VV S S
]( ) = . l%éq( r:éXl,er,s - QZ,TXLle,z)

= r%q (QT,Q(XI)XLT - Qq,T(Xl)XLQ) :

Due to the detailed balance relation one has

PT,le(?:) — P X(qe) Qle(qe X(qe) _ X(qE)Xl(?IE)a (34)

l,q > 1l,q

where X (4©) was defined in (19). For simplicity we consider only one-quantum tran-
sitions. Then

7l —_— 7l
Pr,q = ((5r,q+1 + 5T,q—1) Pr,q> i,q - (5r,q+15l,5+1 + 5T,q—15l,5—1) i,q?

and
](VT) (1 - 5!1,0) (Pq—Lle,q—l - Pq,q—le,q)

_(1 - 5‘]7‘]m) (Pq,q+1X1,q - Pq+1,qX1,q+1) )

(vv)
I q

gm—1
1+1, Li+1
1, (1 =640 le (Qq—lquLq—lXUH o Qq,q—lequ”)

Gm—1
L+l 141,
+(1 = dg,4,) Xl: (Qq+1,qX1,q+1X1,z - Qq,q+1X1,qX1,z+1>

= (1= 04,0)Qq-1,¢(X) X191 — Quq—1(X)X14

_( q,qm) (Qq q+1( )Xl,q - Qq+Lq(X)X1,q+1> )
where ¢,, is the highest vibrational level.

Introducing effective transition probabilities
Pj(X1) = Pij + Qiy(X1),

13
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one can get the following expression for the collisional operator [ 1(};) (Xy)

I = (1- 5q,0)3q—1(X1)X1 - (1= 5q,qm)jq(Xl)X1 — 0g,qm (PgaX1,q = Pypnans) ,

1,q

(X)Y P q+1 q(X)Yl,qul - Pq,qul(X)Ylm

where P, ; is dissociation probability of the molecule in state g¢,,, and P, , is
recomblnatlon probability of the dissociation products to initial molecule in state
¢m respectively, subindexes 4 and 5 denote the dissociation products. P 4,y with
q < ¢, are assumed to be negligible. It should be mentioned that according to (34)
one has j,(X @)X = 0.

Since the modified collision operator (6) contains only one nonzero term in the
sum over the approximate summational invariants, which corresponds to v¥; = ¢; ;,
equation (7) for the scalar part of the perturbation of the distribution function in
dimensionless form can be written as

) (_(1 - 5q,0)3q—1(X1(qe))X1(0) + (1 - 5q,qm)5q(X1(q6))X1(0) + 5q,quq,dX1(?q)

51 (X17) R = (1= 80l (XI)XY! ’+<1—5q,qm>3;<Xf°’>Xﬁqe)) (35)
35

= (1 - 5q,0>§q—1(X1(qe))X1(qe) - (1 - 5q,qm)jq(X1(qe))X1(qe)

~Oggm (PaX(%) = Pyymans) — 81 (X{%)) R,

5:;(X)Y = Qq-l—l,q(X)Yl,qul - Qq,qﬂ(X)YLq'
Here S1(X) is defined in (16) and, as in Section 2.2,
R = (600, T (X{")) = = i (PpaXily) = Pyrnans)

1,q

R§0)2<(5a1,[1(X(qe)>X >—_Z qu()

Sums in these expressions are reduced to their last terms since we neglect all dis-
sociation/recombination process except with participation of the highest excitation
level.

Let us introduce new variables X; = X + eX” R = RY) + cR\” using

the relationship j;_l(Xl(O))X (ge) — j ( DX which follows from equations
FXN XD — 0 and j1 (X +Y)Z = [(X)Z + j.,(Y)Z. Returning to dimen-
sional variables, one can rewrite (35) as
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(1= b )jat (X1 X0 = (1= 8, ) (X () X1
—0g, (PgaX1q = Pyanans) — 51 (X(qe ) Ry (36)

+(1 N 5‘170)3;—1(X1>X1(qe) - (1 - 5q,qm)jr,1(X1)X1(qe) = 0.

From the expression for R; one can see that reaction rate is determined not by the
equilibrium or quasi-equilibrium distribution, but by the quasi-stationary one, Xj,
that will be found from equation (36).

Summation of these equations (analogous to that in Section 2.2), yields a set of
equations

(1 o 5q,qm)jq(X1(qe)>X1 + (1 o 5q7qm)%(Xl)Xi(qe)

(37)
qdm
+6q,qm (Pq,Xm,q - Pq,rn4n5) + Z Sl (Xl(?;:)) Rl =0.
k=0

This set of equations has a more complex structure than (22): it contains non-
diagonal terms due to the 5;(X1)X1(qe) term. To solve (37), we will use an iterative
procedure similar to that suggested in [8| for a two-temperature case. Following de-
finition from [8], [10] we consider only the case of a so called weekly exited system.
This means that the populations of exited levels are so small that the V'V transi-
tions occur mainly with participation of the low levels. This can be expressed as
QuA X111 X11 > QU X) 441 X1, while I < ¢. In this case Q11,4(X) is weekly
dependent on the form of X as a function of ¢. Since V' V-exchange with participa-
tion of low levels predominates, the main contribution into Q,11,4(X) comes from
terms with small [, for which the distribution function for which is close to Boltz-
mann distribution. We shall keep all this in mind and apply this procedure later,
just before obtaining the expression for the reaction rate.

The expressions for the vibrational population densities formally are similar to that
obtained in a linear case in Section (2). The detailed balance relations (34) are used:

satl (Xl(qe)) _ Xg+1
Pyrivg <X1(q6)> Xq

Xig+1 = agX1,4 + by, Aq =

RiS (@@) N

) (Z R151 ( ) - Jq(X )Xi(qe)> == (qe)) + by,

by =

Pritg (X1 Pyt (Xl
0 is defined in (23). This allows to use eq. (24) and to write
q q q
X17q+1 = HaiXLO -+ Z bm H a;. (38)
=0 m=0 i=m-+1

15
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Thus
_ Xg < =
Xl,q - _Xl,O + Rlcq + Cqs
X0
(39)

q

. a-1 Xq S <@(m)> z (X1) _ qil Xq jyln(Xl)Xl(qe)
220 X+t Py (X1) 1 20 X1 Py (X19)

As in previous section, X can be determined from the normalization condition:

Zqu Zinlo_l'RlZCQ"“Zcq_ %X10+R10+C:’,

q=0 0 q=1 q=1

which gives

XLC] = <Xq (nl O) + éq> + Rl <Cq — —C> ) + Aq + Rqu, (40)
h Q
where B, is determined only by the quasi-equilibrium distribution and therefore does
not change during the iterative procedure. After multiplying Eq (40) by —P, 4 and
adding —F, ,n3n4 to both sides we obtain

RE) — P A
Ry = wdan R = B, X9 — B, nans. 41
1 1+qu7qum Y Qm7d l,qm dm, n4n5 ( )

The iterative algorithm is described below.
Xigw = X% + Aoy + RiwBy Agi) = Ag, (X1a-).

Using X% for a primeval approximation for X;, we have Qijo) = Qm»(Xl(qe)),
jq( )(X(qe))Xl(qe) = 0,¢ = C = 0. Then Ag) = 0 and X 4() = Xl(?;) + Ry B,
according to (40), that coincides with the result for a small admixture (26). After

substituting it into expressions for Eq and C, one obtains

R(ae)

R 0) = (42)

since cq(X1 )) = Ri6,(B) = Ri¢,(¢), C(B) = C(é). If VV processes are negligible
then &, — 0, ¢ - 0, é — ¢, and C — C. Tt gives us (27) obtained for small
dissociating admixture concentration. In further approximations no corrections in
denominator of the expression for reaction rate arise, but only in the numerator. For
the first iteration we obtain the same result as for the zero one, and for the second
one

R(qe) (1 - (1 + PQm,dBQm)_l AQm (6(6))>

Ry(2) =

16
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To study the dependence of the dissociation rate on pressure, let us separate the
dissociation and recombination processes in expression (42)

Ry = Ryq— R, (43)
and introduce the following dependencies, keeping &, = [M]|™'n,, a = 1,...,5, con-
stant: 5

F)z'j = [ ]ﬁi,j(é‘l?"'?éxﬁ)? Pq,d— P(U) [ ]pg%(é-la?éf))?
Py =PY + [MpY)(&,...&), &~ M|, C~[M]T'C', B,~[M] B,

~ 1 o c 5 c, ¢ c, o o
Here fij = ¢\ + ;pi,j)é“a, Pl = 2 Py €., and plo) = E plaDeq; p) are

responsible for VT processes, while qi(}j) for the V'V processes; pg,da) are responsi-

ble for collisional dissociation processes; pgf;o‘) are responsible for the three particle
recombination reactions. We also use that éBq = [M]™! ch, CB = M ]_1(:’2;, and

therefore A, = [M ]_IAQI. Here all primed parameters are independent of pressure.
As a result, in a low pressure limit, for R; 4 defined by (43) and (42) one obtains

Rioan =~ (44)

In a high pressure limit it results in
pé(liz,dX(Im
149, (B, + A, (D

R1(0),d00 = >§1[ 2. (45)

Analogous to the case of small admixture, the low pressure reaction rate does not
depend on the reaction probability, and with pressure increase we observe a tran-
sition from unimolecular reaction mechanism to the collisional one. The difference
between (45) and (33) consists in that in (45) we kept only the main term of expan-
sion, proportional to [M]?, while in (33) we kept also the next term, proportional to

For recombination part R;, in a low pressure limit one obtains

_ Pq(,:m&lgf)
,7’0 - u ~
Py (B, + 4, (0)

Ry (o) [M]?, (46)

and for high pressure limit

_ q,m €485
L+ pi) 4 (B, +4,,.(9)

Ry (0),r o0 [M]?. (47)

For both dissociation and recombination processes, increasing pressure causes a tran-
sition from unimolecular regime to the collisional one.

The dependence of rates on the noble gas concentrations is not significant, though
it is more complex in comparison with the case of a small reactive admixture.

17
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3 Exchange reactions.

Expression similar to (27) can be obtained for exchange reactions [1]+[C] — [B]+[D]
if concentration of reagent [C] can be assumed to be constant (for instance it is high
enough not to account its vanishing during chemical reactions). In this case we set
Py.a = p&[Méc in (27), where &c is the concentration of reagent C'. S-operator
defined by (16) should be also modified. For exchange reactions the relation between
reaction rates is a little bit more complicated. These relations can be find from the

set of relations (14) for different k:

Crpl + CepRe + CgrRe + CppRp = 0.

Taking three different & (or two different k if B and D are identical) we can obtain
expressions Ro = ng Ry, Rg = ngRi, Rp = np Ry, where n¢, ng, np are the functions
of C1x, Coks B> Cp k- Therefore the modified S,-operator is defined by the relation

0X1,
b 8nD

<%+nCaXl’q 8X17q _1_17

8n1 anc B @nB ) Ry = Seml(Xl,q)Rl, (48)

and one should use S¢,1(XT5,) instead of S for calculation ¢, and C' in Eq.(27). This
leads to the modification of the pressure dependence of the reaction rate

B P X Q1 e
1 +p((§)€c [C;m - O,quQl_l

R1 = } [M]2 (49>

In this expression the denominator is independent of pressure. Thus, in contrast to
the case of unimolecular reactions, the reaction order does not change with pressure
and reaction rate differs from the equilibrium one at all pressures. The last feature
can be interpreted in the same way as the previous result for the dissociation reac-
tions (see equations (32, 33)): the high-pressure limit does not imply vanishing the
ratio of reaction time to relaxation time, unlike in unimolecular reactions:

()
_ pc’éc Ty Q1 1
peéc e, = Oxan Q7] = 2= = =e
Pgrm.gm—1 Tehem X gm Xam

Y

(o)
Rl ~ _pC X‘hné)cé‘lp‘]m#]m_l [M]2 — XQmquLij_lé-l [M]2
po et 1

18
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4 Parallel Reactions.
4.1 Dissociation into different channels from one wvibrational state.

Let us first consider the simplest example of parallel reactions, where a molecule
of sort 1 decays from vibrational level g, in two channels C' and D, that can be
described as 1 — C7 4+ Cy and 1 — Dy + D respectively. Only one sort of noble
gas with concentration & is considered. This situation can be described by setting
in the previously obtained formulas for reaction rates

Py = Po + Pp, Py = P 4 plY¢[ M), I=C,D.
From (14) it follows that
Re, = Re, = Rp, = Rp, = —R.

Then the S-operator can be written as

0 0 0 0 0
Sl(Xl,q) = ( ) Xl,q'

on,  Onc, Onc, Onp, Onp,

Then the level population

Xq Xq
Xi,=m=+ R{A,, A, =c, — C=,
e, T T T
where ¢, and C' contains S;-factor as a co-factor. As a result for total dissociation
rate Ry = — P, 4X14,, = —Py,.daMXqn /@1 — Py, a1 Ay, we obtain:
P, Pc+ P
Rl — qm7dn1XQm/Q1 — _ ( C + D) anQm — Rlc + RID,
1+ Py,.a44n, Q1 [1+ (Po + Pp) Ag,,]

(P1 + pi?6[M]) Xana

T (P 4 PR M 109+ 25 A

[M] ?

where A, = A[M]~!, and A} is independent of pressure.
From (50) we see that reactions C' and D depend on each other since the rates Ry
depend on Py and Pp. Therefore a traditional concept of rate constants can not be

used.

This effect can be observed experimentally if only one of the channels can be ex-
cluded, for instance if reaction C' is caused by some additional component C'.

19
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4.2 Parallel reactions of one species in different vibrational states.

One more example of non-equilibrium effects in parallel reactions can be illustrated
by considering the situation when a molecule of sort 1 on level K reacting with a
molecule of sort C. We further denote this reaction as reaction C', while reaction of
the molecule on level N we denote as reaction D. The activation energy of reaction
C is lower than D. Now let us assume that the perturbation of the C-component
distribution function as well as concentrations of the products are negligible. It can

be described by substituting P, 4 into equation (17) by Pedyx + Ppdgg,.. The term

Xl(qe)

on
o (6%
be reduced to the S-factor due to the lack of relations that reflects the elements
conservation (14). Remembering eq. (28), this sum can be written as

ox (1) X (51 L™ (et (k) = ED) 8ln(kT)) i

that contains the derivations over number densities of species Z R, can not

, B 1k
Z ony, RQ_Z ny kT Ony,

«

Assuming thermal effects to be small, we shall further neglect the derivation 0T /0n,,.
Then the set of equations (22) for X; , = Xl(?qe J+ X l(?q) can be rewritten as

q
]q(X) - PCXl,KH(q - K) - Z RXl(?ke)/nl = 07 q = 07 c Qm — 17
k=0
where j, is defined in (17) and equation (21) is replaced by
R=—PcXi gk — PpXi,, = Rc+ Rp. (51)

Here 0 (z) is the Heaviside function: § = 0 for + < 0 and # = 1 for x > 0. The
recurrent relationship thus takes the form

Xq+1 1 1 Xl(qke) ( )
Xigpn ==X 4+ R — + PcX1k0(q—K)| .
o Xq ! Pyii4 kz:% ny

Solution of this equation can be written in the form (23) where b, should be replaced
by b,

P, R 09 P
€ X1 x0(q— K) = + —2 X, xb(q — K).
g+l Pyi1q M Pii1q

b= b, +

After some algebra, similar to that done in the previous section, for the vibrational
population distribution one obtains

Xiq=XeX10/x0+0(q — 1 — K)Pc X gdy + Ry,

q—1 1
dq — Xq

)
m=K Xm+1 Pm—}—l,m

20
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d, = 0 when ¢ < K, and ¢, is defined in (25).

Taking into account that X; x = xxXi0/x0 + Rck, expression for X;, can be
rewritten as

X
Xig= [Xq + 0(q —1- K)PCXqu] X—l(;o + R[Cq +9(q -1- K)PCCqu]' (52>

As shown further, due to depletion of level K caused by corresponding chemical
reaction, this distribution function can vanish at some level gy < g,,. In this case the
level population for ¢ > gy becomes negative and therefore has no physical meaning
(as for ¢ > ¢,) and we should reformulate the normalization condition for X g

XlO q0 q0
—= > X¢+Poxx Y 0(g—1-K)d,

q0
n=) Xig=
q=0 q=0 q=0

q0 q0
‘f‘RZCq + RPocgk Z@(q —-1- K)dn

q=0 q=0

= X1,0 (@10 + Ho) /x0 + R (Co + Go),

q0

q0 q0
Cozch, GoZPCcKZQ(q—l—K)dquch Z quPCcKDo,
q=0

q=0 g=K+1
q0 q0 q0
Qo= _X¢  Ho=Poxx) 0(g—1-K)d,=Fexx Y dy=PexxDo.
q=0 q=0 g=K+1

Xéqe) is then redefined as Xéqe) = n1Xq/Q10-

If qo is larger than ¢,,, then g,, should be used instead of ¢y and (19, Co, Go, Hy
should be replaced by @y, C, G, H defined in Section 2.2.

As a result we obtain
Xi0=(Q10+ Hp) ' (n1 — R(Cy + Go))xo,
and thus

X, = Q10

g [ oo

Co + Gy X1(qe) Co + Gy X1(qfe<)
R e, — 4 4 0, Ped, | cx — : (53)
T Q10Q10+H0 ny T laledy | ek Q10Q10+H0 ny

= nl(QlO + HO)_1 [Xq + OqPCXqu] + R [Wq + eqPquWK] :
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Here and further 6, = 0(¢ — 1 — K) and W, = ¢, — qu. This expression
Q1o + Hoy
coincides with (26) when Po — 0 and gg — gn.
For the first term in (51) one has
Ro = —PcXi1x = —(Q10+ Ho) ' Poxxni — RPcWk, (54)

and for the second one

PD (qu + PC’Xquo) n
(Q10+ Ho)

Rp = —PpXy = — - — RPp (Weo + Pedg,Wk) - (55)

It means that reaction D is treated as a reaction from the highest (floating) pop-
ulated level, but not necessarily from level ¢,,. If the dissociation from every level
q < qo is considered, then more smooth dependence of reaction rates on a floating
level qo will be obtained, but it leads to more complex formulas that we were trying
to avoid for the clarity of presentation. If dissociation is selective, occurring from
level g, only, the simplifications in all further results can be obtained by setting
Pp =0.

Then for reaction rate (51) one has

Pex(1+ Ppdy,) + PpXxg
1

R=-n :
Q1050

So =1+ Pp (e — CoQitXar) + Q16 DoPox (56)

+Pe ((1 + Pquo) (CK - COQl_éXK> + Ql_(}DOPD (quXK — CKX%)) .

In the limit P — 0 this expression converts into (27), since gy should be replaced
by g, in this case.

After substituting (56) into (53) and some algebra one obtains for the quasi-station-
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ary distribution function

n R
Xig= Qlolso [Xq - PCCK(QqXK - Xq) — Poxk ((1 - 6)q)cq - 6)qdq> + 90011} 5

- 2 o5

m=K Xm—|—1 Pm—|—1,m

woq = PoPp (XK (8,dncg, — dgoCn)

+CK(dquq - ququo)) + PD(quXq - Cquo)-

The first term in ¢, proportional to PoPp can be treated as a continuous function
of ¢ in the interval K < ¢ < Nj. It decreases when ¢ increases and vanishes at
q = qo, therefore it is positive. The same is for 0 < ¢ < K since it vanishes at ¢ = K.
The second term is positive for all ¢ < go. The condition for determination qq is
X1, = 0. This leads to the equation (¢gq, = 0)

(1+ Peck)xqe — Pexr(cx — dgg) = 0. (58)

3 being the solution of this equation may be non-integer. Then the nearest integer
less than ¢ should be chosen for gq.

Considering Pr as a function of the mixture number density [M] in the form Pr =
P8 4+ p9¢[M] one gets the expression for ¢¥ as a function of [M]:

g _ (P 406 sc[ ]) (ck = dip)
XK [M]+ (P + péo[M))cy

where ¢; ~ ¢[M]™!, d; ~ ci; [M]~! and ¢, and cZ; are independent, of [M]. When d,,
is much smaller than cg, this equation can be solved by iterations.

(59)

Since the behavior of the system differs significantly for the case of ¢§ < ¢, and
45 > ¢, we separate them in our analysis. Introducing critical value of the mixture
number density

P& (Xt xic (de = dbg) — i) Péwch

[M]C 1 d/ (@) 4 -1 (0 _
+pl §CX IXrxdo — po e (Xgtxr ) e — peocy

(60)
1
Xgixrx —1— X;,iXKd;gC/El

E(C) —

and using relations (58) and (59)(¢) < ¢, corresponds to x no > Xxn and therefore
to (525) — p(c‘f)&jc’K) ([M] — [M].) < 0) one can conclude that if pS'¢ccy > () then

23



DusuKo-XxUMHUYECKasi KWUHETUKA B Ta30BON JIMHAMUKE www.chemphys.edu.ru/pdf/2011-06-16-001.pdf

[M]. < 0 and thus ¢) < ¢, at any values of [M], and ¢ is determined according to
(59). If pY¢cct < €@, then ¢Q < qu at [M] < [M].. If [M] > [M], then ¢ > ¢
and in all expressions ¢j should be replaced by ¢, and we shall use notations C', D
and @) instead of Cy, Dy and ()¢ respectively.

From expression (59) it is seen that for the high-pressure limit (that implies [M] >
[M])

X P& €o(dk = dip)
Xk 1+ p¥eody
Since the RHS of this relation is always less than unity, the solution for ¢ > K

(61)

always exist. If p(cc)&yc’K < ¢ then ¢ > ¢, and in all expressions gy should be
replaced by ¢,,. If p(cc)fcc’K < el® go is determined by expression (61).

For the low-pressure limit one obtains

Xg} CZ;O
Wl o

then for cigg < ¢ the maximal level g is close to K.

4.8  Parallel reaction rates.

Let us consider expression (51), in order to separate the contribution of reaction C
from that of reaction D and to study their mutual impact, using expressions (54),
(55) for Re and Rp and expressions

(ge)

X
Xl,K: K |:1—|—PDCqO (1—@C—K>‘| s
So XK Cqo

X (ge) d
Xigy ==& l1 + Pock (1 - i—K (1 - é)ﬂ .
q0

Since for rather high gy values X 4, slightly depends on gq, one can replace it by g3
and rewrite the expression for X 4, as

(63)

X0 (29 e
So e M]

([M] = [M]). (64)

Thus X 4, vanishes when ¢y becomes smaller than g,.

Introducing the partial rates RY = Rc(Pp = 0) and RY, = Rp(Pc = 0) that
correspond to the reactions without parallel ones, Rc = PcX; g and Rp = Pp X 4
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rates for C' and D reactions respectively can be represented as

ny

Ro=RMA¢,  RY=-P ,
¢ c=e ¢ CQlOSCOXK

S. .
Ao == (14 Polegy = ckX& Xao) )

So (65)
Sco=1+F¢ (CK — Q19(Co — DO)XK) ;
RD = RO AD R = —PD i X
D ) QlOS g0
o SDO —1 7
Ap = S—O <1+P06K—P0qu XK(CK—dq0)> , (66)

SD() =14 Pp (qu - OOQl_(}X%) .

Factors Acg and Apg describe the mutual effect of parallel reactions. Their deviation
from unity indicates the scope of the effect. If gg > ¢y, then the rate R, coincides
with R in (27).

If o < ¢y, then the expression for Ap can be rewritten using the relationship (58)

0cx —d
Ap = SD°(1 + Pocg) |1 — X8 K~ Gu (67)

Since ¢ and go are very close to each other, Ap in (67) is very close to zero. This
means blocking reaction D for ¢g < q,.

From (63) and (66) one can see that X;,, and Ap become negative in the same
conditions. It means that for p(cc)fcc’K > ¢ reaction D is blocked regardless of
pressure. For p(g)gcc/K < ¢ reaction D is blocked for low pressure, when [M] <
[M].. In Fig.1 domains on [M] — (CC) plane where reaction D is allowed or blocked

are shown (p(cc), = pg)fcclz(kgc ).

From expressions (65), (66) the asymmetry of reactions C' and D can be seen, since
AD vanishes under described conditions. It is also shown by the fact that [M]. and

© depend only on probabilities of reaction C. It should be also mentioned that
both () and [M]. are pressure independent.
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[M]

Allowed
zone

[M]_(0)

0

(c)

Figure 1. Domains on [M] — ps” plane where reaction D is allowed and blocked;
pg)/ = p(cc)ﬁcc/K/sgc). The curve distinguishing these domains is a function
M]. = [M].(p") (see eq.(60)); [M]e(0) = PS¢y /el For P& = 0 allowed/blocked

domains degenerate to p(éf)/ < 1 and to p(éf)/ > 1 ones respectively.

4.4 Dependence of reaction rates on pressure.

Now let us analyze the behavior of these expressions at low and high pressure limits
assuming component concentrations &, = n,/[M], a = 1,2,C to be fixed. Further,
opposite to (33), we keep only the principal terms in the correspondent expansions
over [M].

The following cases exist:
I P~ = P( u) P(C) — P Pr = P(u) P(C) — P(u (c) M]:
. re=rot $ + pSecIM], Po +1p + pp o[ M];
I Po=PY =pf¢cM], Pp =Py + P = PL + p{ & M);
ML Po =P+ PY = P&+ p¢clM), Pp = P = pi&[M);
IV. Po=Py, Pp =Py’ + Py = P + pi M),
V. Po=PY +PY = PY +pQ¢c M), Pp = PY;
VI. P :P(C) — (c) M. P :P(C) — (c) M]:
e pc écM], Pp D =Dpp &lM];
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VIL P = P = piéc[M), Pp = P

VIIL Pe = PY = P, Pp = PY = pl&,[M);

IX. Po=P, Pp=P.

Case 1 is the case with two dissociation reactions from level K and N respectively,
running in unimolecular and collisional channels. Cases II and III have one reaction
with molecules on one of the levels and dissociation from another level. Cases IV
and V represent dissociation from both levels K and g¢g, and one of the reactions is
purely unimolecular. Case IV has two chemical reactions of the molecules on levels
K and g9 and components C' and 2 respectively. Analogous are the cases VII and
VIII. Representative of case IX can be two reactions of isomerization.

Here considering high pressure limit we assume that [M] > [M].. For low pressure
limit we assume that [M]| < [M]. if [M]. is defined and nonzero.

Let us start with case I. We use the following expressions

oM7Y, Com CHM]T,
(68)
dy=d) M7, dy, ~d, [M]", D= Dj[M]

Corresponding limits for Rep can be obtained if in expressions (65), (66) we set

Po = P 4+ p9¢c[M], Pp = PY + pl9&[M]. Then for the low pressure limit one
obtains

SiXK
RO — M 2’
T (o

(ke — Q10(Ch — Do)xx)(¢hy — XK Xg0)
dy. (Cre — CoQroxxk) + QroDi(c cho XK — CiXgo)

Arco =

For [M] < [M]. factor A po vanishes and thus reaction D is blocked.
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For the high pressure limit the partial reaction rates and A-factors behave as follows

(c)
R?Coo - - © glpc fCX_Ii ; [M]Qa
Q10 (1 +pcée (C,K - Q10(Cp — DO)XK))

AICoo = S()_Iloo (1 +p(C€)£C (C/K - (C(l) - DE)) QI&XK))
x (146 (¢, = chexi'Xao ) ) (70)

_ (0) Cox () (c) Coxx
Soreo =1+ pp'&a <C;0 - Q—lso> + po'ée ((1 +Pb £2dlgo) (C/K - m

/

+Cl;100 (stc)fz (C;OXK - C,KXgo) + XK)) ;

& E2X g
R?Doo _ (c)l D, 2Xg — [M]Q,
Q1 (1 +pp &alc, — C'Qq Xgm))

(71)

Ao = e (1408 (4, ~ 2= ) (20 - o)
6gc) S[OO gm Ql ¢
where S is the same as Sy in (70), but with all parameters without subindex 0.

Thus at high pressures and when p(g)gcc/K > £l reaction D is blocked, while if

p(CC)SCC/K < egc) factor Aj ps has finite and nonzero limit. In the latter case subindex
0 should be also discarded in formulas (70).

Now we consider the case when only the collisional path for the reaction C' is allowed,
that is the case II. The results are obtained by substituting Po = Pé?) = p(g>§c[M ]

and Pp = P 4+ PY = P 4 p©¢M] into expressions (65), (66). Using the
relationships (68) for low pressure we have

0 — o
RIICO - RICom

Arrco = 50_1110(1 +p& €ol(ci — Q1o (Ch — Df))XKD (Clgo - CIKXI_(1X90>’
(72

Sorro = p¢'éc (dy, (¢ — QuoCox) + Qo D (chyXie — X))

+Clgo - Ql_(}O/Xgoa

For p(cc)fcc}( > £l the reaction D is blocked, as previously, while for the opposite
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case one should use the following expression

é-1>(9m [M]2
Qlclgm - O,Xgm 7

B O/ (C) C/
Arrpo = 51110 (C;m - %) (1 - %) )

0 —
RIIDO -

and replace gy by ¢, in other expressions. S is the same as Sy;7¢ in (72), but
with all parameters without subindex 0.

For high pressure we obtain the same results as in case I.

R(I)ICoo = R(I)Cooa AHcoo = Alcoo, R?[poo = R(I)Dom AHDoo = AIDoo' (74)

It is seen that when Péu) = 0, the partial reaction rate R, - has the same structure
in the whole range of pressures. It should be also mentioned that depending on the
intensity of the collisional part of reaction C, factor A;;ps behaves differently, as
in case I.

)

In the opposite case with P](Du = 0 at low pressure limit we obtain

0 — o
RIIICO - RICOa

(75)
(i = Qu3(C — Do)xxe) (1 + P56y = X X))
d (¢ — CoQroxx) + QroDy(chy XK — i Xoo)

AIIICO =

and reaction D is blocked. For high pressure it is as in case I:

0 o _ 0 o _
RY oo = R coor Alricos = Arcoos, RYppos = R poos Arrrpos = Afpoo, (76)

and again for A;;; po there are two cases depending on pg) value.

Now let us remove the collisional paths of the reactions, starting with the case 1V,
when PC(?) = 0. For the low pressure limit we have the same results as in case I:

Rivco=Rice,  Aweo=Arco, (77)

with reaction D blocked. It is explained by the fact that at low pressure the collisional
mechanism is negligible.
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At the high pressure limit one obtains

0 ( E1XK L4056 (¢, = X Xon)
Ry oo = —Fe 0 M],  Awveoe= Cr e :
1 L+ p6 (¢, = C'Qi e, ) -
R}y pos = B pec Arvpeo =1.

If the collisional path of reaction D is closed (P,(jc) = 0), then for low pressures the
picture is the same as in case I:

RYco=Rlco.  Aveo=Arco, (79)
with reaction D blocked, while for high pressure one obtains
R(\)/Coo - R?Com AVCoo = 17 (80)

and reaction D is open only for p(éf)&;c’K < el

) §1Xgm
R(\)/Doo = _Pé)l—g[M]v

o
(81)
1 - plo (c)—1
Ay Doo = A Dool pler_y = Pe Scee
0 1 pdée (k- Q7 (O - D) xx)
and g should be replaced by g,, in expressions for reaction C.
Now let us turn to case VI with only collisional reactions (Péu) = Pg‘) = 0). For the
partial reaction rates and A-factors one obtains
RY1co = RYrcoe = Rlcoor  Avico = Avice = Arceo,
(82)
R?/IDO = R(‘)/IDOO = R(I)Dom Avipo = Avipe = Afpeo-

In this case, one has just has one expression for all these parameters in a complete
pressure range.

Case VII where Péu) = l()c )= 0, is similar to case II at low pressures:

0 o _ 0 o _
R rrco =R cos Avirco=Arrco, RY1ipo= R po, Avirpo = Arrpo. (83)

For high pressure, one obtains
RYrcose = Ricoer Avitco =1, RYrrpee = Ry por Avirpe = Avpee. (84)
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For the opposite case, when PY) = P = 0, for low pressures and [M] < [M],

reaction D is blocked and we have

RVIIIC’O RICO?

N QTo(Ch = Dy)xc) (1+pF& (chy = chxi Xeo ) ) | &
(1+ P €adly, ) (¢ — QréChxx) + Qid Doxx
For high pressures one obtains
RY 11 oe = R% oo Avirrcso = Ay coos
(86)
RY 111 poe = RV poos Avirrps = 1.

Finally, let us consider case IX, where only unimolecular reaction paths are available
(P(C) PY = 0). For low pressure, reaction D is blocked and one obtains

Rixco = Rico, Arxco=Asco. (87)

For high pressure the corresponding results are

P(U) " .
Ry oo = —M1 CQIXK = - ((J)X[(g g Arxcoo = 1,
(88)
P(U)X (w)
R(I)XDoo = -1 ngm = P Xém), AIXDoo = 1.

This analysis shows that only for high pressure and purely unimolecular reactions,
the non-equilibrium vibrational distribution does not affect the relationship between
partial and total rate constants, i.e. the reaction rates are equilibrium. Only for this
case the mass action law is valid. For all other cases a nonlinear dependence of the
total rate constant on the partial reaction probabilities Py, I = C, D means violation
of the mass action law.

Another important conclusion is the effect that arises from the collisional reactions:
It Péc =0, then Ap, =1 and RY is equilibrium. In this case the non-equilibrium
effects are caused only by the correlatlons and are all contained in the correspondmg
A-factors. These factors are determined by the collisional probability PD And vice

versa, if PD =0, then Acy, = 1 and R}, is equal to unity.

Possibility of blocking one of the parallel reactions is an important feature of the
non-equilibrium system. From expression (67) for Ap it follows that the channel D is
blocked When 9o < gm. This is the case in a low pressure limit and when [M] < [M],

and P ) £ 0. For P( “) = 0 one has [M]. = 0 and reaction D is blocked only if
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collisional part of reaction C' is rather intensive, i.e. pg>§cc;( > £(©). Experimental

study of this effect is of great interest.

5 Conclusions.

A general method of derivation of the gas-dynamic equations for non-equilibrium
gas mixtures with internal degrees of freedom [1] was applied to study the effect of
non-equilibrium on reaction rates. Its appropriateness was approved by comparison
with the commonly accepted results on thermal dissociation of a small admixture.
Unlike the previous approaches that could describe only weekly non-equilibrium
situations (due to assumption of smallness of the part of the collisional integral re-
sponsible for the chemical reactions, see [12|) or spatially homogeneous situations for
strongly non-equilibrium situations [6], our method is a consistent extension of the
Chapman-Enskog method for gases with internal degrees of freedom. For the ther-
mal dissociation process the influence of chemical reactions on the gas temperature
has been discovered, that is described by the S-factor and appears in the expression
for corresponding reaction rates. The same is for the exchange processes. For the
parallel reactions this effect cannot be reduced to S-factor. Vibrational distributions
appears to be the linear functions of all reaction rates, and more complex analysis
is needed if these thermal effects are not negligible. This will be done elsewhere.

It is shown that accounting for both unimolecular and collisional channels of reac-
tions significantly changes dependence of the reaction rates on pressure. Presence of
the collisional reaction mechanism leads to a non-equilibrium behavior of reaction
rates even at high pressures.

Under vibrational non-equilibrium conditions reaction rates are complicated func-
tions of the reacting partners characteristics, even in the case of dissociating ad-
mixture in the mixture of inertial gases. Vibrational non-equilibrium causes strong
correlations between reactions passing in parallel. One reaction can inhibit another,
up to a complete blocking. Such correlations mean violation of the mass action law
for the non-equilibrium mixtures. This necessitates reformulation of the chemical
kinetic equations and new methods for their solution. This also makes challenging
the procedure of the extraction reaction rates from experimental results.

Results obtained for the reaction rates confirm our predictions that the non-equilib-
rium affects mostly kinetic terms of the gas-dynamic equations, and not convective
terms [1]. Significant influence of non-equilibrium on reaction rates is observed in
the zero-order approximation, while such an influence on the transport properties
(transport coefficient modification) will occur only in the higher-order approxima-
tion.

We plan to devote our further investigations to deriving of the two-temperature gas-
dynamic equations for non-equilibrium gas mixtures, accounting for the temperature
that characterizes internal molecule energy.

32



DusuKo-XxUMHUYECKasi KWUHETUKA B Ta30BON JIMHAMUKE www.chemphys.edu.ru/pdf/2011-06-16-001.pdf

Acknowledgements.

Financial support by ESTEC Contract 21790/08 /NL/HE, Grant RFBR 10-01-00327a,
and by the Russian Federal Target Program 2009-1.1-112-049, Contract 02.740.11.0201
are acknowledged.

The authors would like to thank Valeria Krzhizhanovskaya of the University of Am-
sterdam, The Netherlands and St. Petersburg State Polytechnical University for her
helpful comments and suggestions on this paper.

Appendix A Kinetic equations for chemically reactive gases.

For the distribution function F, (v, ka, r,t) normalized to the number density the
kinetic equation for chemically reactive gas mixture can be written in the form
[11,13]

oF,

VF,=1
BT + Vo VI, =1,
lv|<2vV'|<1 , ,
I, = 3 S Jdvy, [fdvi WY (Ve kas Vi k| Vi, k) (A1)
v,V ky ki ’
" Fj F, Fjs

i sa(ka)  salka) pev s(ks) |

Here W is the transition probability; v characterizes the reaction channel: v =
{v1, ...,V ...}, Where v, is a number of particles of sort « in channel v; |v| = vy +
wo. F Uy + ... is @ number of particles in the channel v; the summation is done over all
pairs of channels for which the number of particles in the initial or final channel does
not exceed two; s, (ko) is a statistical weight of state k,. Primes over integrals mean
that the corresponding integration is done over different quantum states, aiming
to avoid multiple account of the same states. For instance, if particles ¢ and j are
identical, the integral over velocities should be taken over the part of the velocity
space as follows:

/!
/ dvadvy = / Aveadv,,
Va<Vy/
where inequality should be realized componentwise. Transition probabilities satisfy
the following microscopic reversibility law W (v, kv, k) = Wh(vyr, kv, k).

While deriving kinetic equations for the systems with coupled states, the question
concerning the definition of those states (molecules) arises. If only stable states are
considered as coupled states (molecules), then the dissociation is possible only via
the dual collisions, while recombination is possible only via triple collisions. In chem-
ical physics, both in kinetics and in thermodynamics, it is generally accepted that
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particles in metastable states (resonances) with the time-of-life comparable with the
mean free path are considered as molecules. Then it is necessary to consider the dis-
sociation and recombination processes that occur via the intermediate metastable
coupled states. These effects are taken into account in the aforecited kinetic equa-
tions. They are responsible for unimolecular reactions.

This kinetic equation satisfies the H-theorem. To prove it let us introduce the fol-
lowing expression for the entropy production o of the quantity M which corresponds
to the microscopic function ¢, (M = (¢, F))

oM = WJ)

[v|<2v|V|<1

:g Z

v,V ko,kuv,k,

/dva/ dvy/ dvy Uy (Va, ks Vr, kur | Vi, k)

Fg F, Fjs
a v dvy, W, v \Va, kow Vur, Ky Vu, k., -
= v v, ) Ll;[,, sp(ks)  sa(ka) gle_,[/ sg(ks)

Let us mention that

v [ ot = - [ v [ vl

= fdvafdquba o =

l/a'H g

[dvy [dv, U o

'Hﬁ

ba ba
41
= v [dv,baUL, = vl [ Vel
(vo + D! T vs!
Ga

where v” = {1,,v'}. Using the symmetry of the UY, over identical particle inter-
changing, the last integral can be rewritten as

”/ dVVHQpa U= /dV,,u Z Qpa V//,
=

where summation over ¢ means the summation over all particles of sort a of the
channel v”. Hence

|V\\/|V”\<2

o = 2.2 [ v [ @i o v o)
yu” ky k,n
F, F,
X H _ﬁ —_ _ﬁ R wV" = Z /lpﬂ
Bev Sp Bev! Sp Bev!”
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Then the H-theorem is proved in a traditional way. The entropy in this case is

defined as Fo (vaks)
o Va7 o
S = —kZZ/dvaFa (Vaaka) IHW

a kg

A mixture of dissociating molecules, of noble gases of two sorts and of the dissociation
products is described by the following set of kinetic equations. Equation for the
dissociating species has the form

OF,
@—tl—kvl-VFl:[l:[erlf—kI{”’

/ F. (V4 ]{4) F5 (V5 ]{5) F1 (V1 kl)
= Avadvs WD (v, ky|va, by, vs, ks) | ——rr 0 v5) )
k4zks/ R ( : 1| b 5) S4 (]f4) S5 (kf)) S1 (kl)

5 /
/ / / 2 4.5« / / / / / / 7 2
+y > /dvadv4dv5dva Lo (v, K v, KOV, Ky v, RS, v, k)

a=1 kY, K K kL

o) Vo o) o

sa(ky)  ss(k5) s (kD) si(k1)  sa(kD)

!
/ " 171 / / " "
+ > / dvidvidvidvs Wiy 5(vi, ki, vy, ks, Vs, ks|vy, by, v k)
K kY ka,ks

|:F4 (Vﬁl, kﬁl) F5 (Vé, ké) Fa (VI/ k”) _ Fl(Vl, kl) Fa(VI k! )‘|

S1 (ki) S1 (kil) S1 (lﬁ) S4 (k4) S5 (k5)

5 /
/ " / 1, / / / / "o
—I_ Z Z / ClV dvadvaWI,a (V17 klv Va7 ka|V17 kl? Von ka)

a=1 k{ kil K,

" lFl (Vi k) Fu (VLK) By (va, k) Fi (Vi ka) F (V5’k5)1

si(ki)  sa (kD) si(k1)  sa (k)

Here subindex 1 denotes the dissociating species, subindexes 2 and 3 denote the
noble gas species, while subindexes 4 and 5 denote the dissociation reaction products.
Term [}* describes the metastable molecules decay via unimolecular reactions and
their formation due to dissociation products agglomeration. Term I{ describes the
dissociation and recombination reactions occurring in three-particle collisions. It
consists of two items. The first one corresponds to the situation when particles of
sort 1 are formed in the state {vy, k1 } during agglomeration (recombination) in three
particle collisions and escape this state during dissociation. In these two reactions any
particle, including 1, can be a collisional partner. The second item corresponds to the
situation when the collisional partner only of sort 1 is considered. In recombination
reaction it can leave the state {vy, k; } and therefore the corresponding term presents
with sign "—". In dissociation the partner-particle can occupy the state {v1, k1 } and
therefore contribute to the incoming process. Term 7" describes the nonreactive
dual collisions.

lFI (Vll, kll) Fa (VI/ k”) _ F1 (Vl, kl) Fa (V/ k! )]
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Equations for noble gases have the form

OF,
ot

Vo VEy =1, =I¢+ "

/
/ / / a,4,5 / / / / / /
> /dvadv4dv5wa,1 (Vas ks Vi, [V KLV BV L)
i, iy

o) o

s4(kf) s5(k5) Sa(K.,) s1(k1) Sa(ka)

lfﬁ(V£>kif%(Vé,ké)FL(Vj ko) __fG(V1,k1)PL(Va,ka)]

/
/ / / a,l / / / /
+ Z /dvadv4dv5Wa74,5(va,ka,v4,k4,v5,k5\va,ka,vl,k1)
A

) o

si(kl)  sa(kl) sa(ka)  ss(ks)  sa(ka)

% [Fl(leki) Fo(va, k) _ Fu(va, ka) F5(vs, ks) Fa(va>ka)]

5 /
£35S [ dvhdviavi Wi (VK Vs kal V. K Vi k)
B=1 ki, kK.,

) o

sp(kg)  sa(ky) sp(kp)  sa(ka)

lFﬂ(Vg>kg) Fa(v/ k/) . Fﬂ(v/ﬂ’k%) Fa(vavka)‘| a=2,3

Here the first term, IS, describes the collisional dissociation and recombination.
As previously, it consists of two parts. The first one describes the situation when
particles of sort «, playing the role of collisional partners, are formed in the state
{Va, ko } in recombination process and leave this state in the dissociation reaction.
The second one describes the opposite situation. Term [ describes the nonreactive
dual collisions.

Equations for the dissociation products can be written as

O0F,
ot

+vo VFE, =1,=1+1,+1)
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=Y f’dvldVﬁWoléﬁ(Vlvkl‘vavkmvﬁ’kﬁ)
k1,kg ’

X[FI(Vlakl) Fa(mGa)Fﬂ(mGﬂ)]
s1(k1) Sa(ka) sp(ks)

5
/ 1 <! a,l AR NI ]
+X > [dveadvidvidviWs (Va, ko, Vs, kg, VI K|V, KL, v Ky
V=1 kg, KT K

lFl(Vlu kl) Fa(vén k:m) _ Fa(vm ka) Fﬂ(vﬂ7 kﬂ) F“/(V’,Y/’ k’/o]
si(k1)  salky) sa(ka)  sp(ks)  sy(K])

/ ’ 1A/ 057 I "oy
-I—k k;}; k”f dvidv,dvedviW 7 (Va, ko, Vi, ki Ve, ki, Ve, kg, VLKD)
1,RqsR3, ¥

a) Mo vy

Salke)  sy(KY)  splks) si(k1)  salka)

lf;(v' k) F (V! k”)ﬁb(vﬁ,kﬁ)__lﬂ(vi,kl)ﬁg(va,ka)]

5 /
P 3 T (<! 1 noyn o1t
30 S [ aviaviavi W (VK Ve, kal vy Kl k)
=1 k, Kk,

Y

vy o Vo vy

sy(KY)  sa(kG) sy(K))  sa(ka)

lm(v" K) Fulvh k) Fy(v) ) Ful(va, kaw

a=4,5 [f=45 a#p.

Term ! describes unimolecular decay and molecular formation due to dissociation
products agglomeration. Term I describes the dissociation and recombination re-
actions occurring in the three-particle collisions. It consists of two items (similar to
those described above). Term " describes the nonreactive collisions.

Appendix B Equations for vibrational population densities.

To solve Eq. (7) we simplify it by assuming that due to short relaxation time both
translational and rotational distributions remain Maxwell-Boltzmann ones (13).
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Then after substituting F{®"%X,(n,) into collisional integral one obtains

V(v [+1a)<2

Ia (F) - Z ZZ/ dV,,/ dV,,/ (;/71/ (Va>ka>vu’aku"vuaku)

!
vy kv ks

X

m 57X FOTRX, n b X }

ﬂEV S/@ SOé /861// S/[)’

Integration over v, and summation over j, gives

I(X) =Y / dval, (F)

lvl<2v|v|<1 / /
= Y NN [dve [ v, [ dvalWey Vs ke Vo s lviim,)
v,/ kv ky Ja

X

. Fﬂe)TRXﬂ - Fo(le)TRXa . Fﬂ(e)TRXﬂ:|

Bev S Sa Bev! S3

The first term of the collisional integral can be rewritten as

lv[<2v]v/[<1

/ /

ooy Z/dva/ dv,,/ vy WY, (Va, Jas s Vors Jurs T [V, Ju, 1)
V>V/ jV7anu’7nu’ ja

(T) (R) (RV)

el + el +e 1

X exp l— v = . ] Il —7F v Xp(ng)
kL sev Q5 (ng)sy (ng)
[v|<2v]v'|<1 Xs(ng)
= Y @I (e nln) [T 5 e = s
v oy sev S5 (np) Bev

Here n,(a, ') is a number of particles of sort a in channel {a, '}, and averaged
vibrational transition probabilities are defined as

W2 (e mrny) = 30 / dvadv, / dv,

jvvjy“ja

XW(;/,V/ (Va,ja,na,Vy/,jy/,ny/|Vy,jy,ny> (Bl)

X exp |—

ﬁlgu Q(ﬁTR) (nﬁ)

)

e,(jT) + e,(jR) + e,(jRV)
kT
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or in more symmetrical way

nv/‘nV ZZ/dVy/dVV/W Vo, Jurs nl/‘vl/vjvnl/)

Jv Iyt

el(,T) + e,(jR) + e,(jRV) 0
X exp | — .
P kT Bev Q(ﬁTR)(nﬁ)

The second term in the collisional integral has the form

lv|<2v|v)'<1

Z Z Z Z/dva/ dVV/ dVV/Wa’ Vuajunu‘vaajaanaavu/a]u/ nv)

Jvsw Ju1myr Ja

R R N 7
exp |— TR 7% TR %
kT § (na) 587 (na) 55 QY™ (ng) sy (np)
lv|<2viv| <1 X X
- Z ZZUQ a, V) WC“’ (n,,|na,n,,) ) A
v,/ ny Ny S (na) pev’ Sﬂ (nﬁ>

Here the microscopic reversibility principle
W;// (V,,/,j,,/, nyl‘VV,jy7ny) = WIL/ (V,,,j,,,ny|V,/,j,/, n,,/) s (B2>
was used.

Thus the collisional operator applied to the vibration populations has the form

lv|<2aviv|'<1

Io(X) = Z SN fala, )

Ny My,

X , Xa X
X Wal/ (na,n,,/‘ny) H % — WS’V (ny|na,nw) %) A

[1
pev sy’ (ng) s&) (o) e sy (ng)

Using definition (B.1), the energy conservation law e, = e,/ (see (11), e, = X ep),
Bev
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and the equality (B.2), one can write

/ /
Wy () = 35 [ v, [ dvi W (g lVsjum)

jV Ju!

e
l ‘| B€ev QERT) (nﬂ)

— ZZ // dVV // dVV’W;// (Vyij,nv|vl/’7,jy’7ny’) X

e (B.3)
e,(j,T) - el(f”) - el(f”v) + (e,(j(,)) + e,(,‘,/)> — (e(yo) - e(yv)> 1
exp | —
KT 11 QY™ (ng)

Bev

Bev’
kT

TR
(659>+eg,v>)_(ego>+egv>)] I Q5™ (ns)
(TR) '
n
ﬂl;[y@,g (ﬁ)

= WY (n,|n,)exp [—

This equality is called a detailed balance relation. It has nontrivial dependence on
the vibration levels due to the ratio of the statistical sums. This ratio holds true
for the case without chemical reactions but for coupled rotations and vibrations.
Without such coupling (e{?) = 0, s(F) = 1) relation (B.3) reduces to (18).

a

References

[

2]

3]

[4]

5]

Kolesnichenko E.G., Gorbachev Yu.E. Gas-dynamic equations for spatially
inhomogeneous gas mixtures with internal degrees of freedom. I. General theory. To
be published in: Applied Mathematical Modelling.

Kolesnichenko E.G., Losev S.A. Kinetics of relaxation processes in the moving
mediums. Himia plasmi, v. 7, Atomizdat, M. 1979. (in Russian)

Gerasimov G.Ya. Kolesnichenko E.G. On the nonequilibrium effects influence on the
transport processes in the dissociating gas. Pisma v jurnal tehnicheskoi physiki
(USSR), 1981, v. 7, No 16, pp.965-967. (in Russian)

Gerasimov G.Ya. Kolesnichenko E.G. The transport processes in the nonequilibrium
dissociating gas. Izvestia akademii nauk SSSR. Mehanika jidkosti i gaza (USSR),
1983, No 5, p. 159-166. (in Russian)

Robinson P.J., Holbrook K.A. Unimolecular reactions. Wiley-Interscience, London,
New York, Sydney, Toronto, 1972.

40



DusuKo-XxUMHUYECKasi KWUHETUKA B Ta30BON JIMHAMUKE www.chemphys.edu.ru/pdf/2011-06-16-001.pdf

[6]

17l

18]

19]

[10]

[11]

[12]

[13]

Stupochenko E.V., Losev S.A., Osipov A.Il. Relaxation in Shock Waves. Berlin,
Springer-Verlag, 1967.

Vallander S.V., Egorova [.A., Rydalevskaia M.A. Spreading of the Chapman-Enskog
method on the gas mixtures with internal degreas of freedom and with chemical
reactions. In: Rarefied Gas Aerodynamics, v.2, Leningrad, LSU, 1965. (in Russian)

Gordietz B.F., Osipov A.IL., Shelepin L.P. Kinetic processes in gases and molecular
lasers. Moscow, Nauka, 1980. (in Russian)

Kondrat’ev V.N., Nikitin E.E. Kinetics and Mechanism of Gas-Phase Reactions,
Moscow, Nauka, 1974, 558 pp. (in Russian)

Gordietz B.F., Zhdanok S.A. Analytical description on vibrational kinetics of
anharmonic oscillators. In: Nonequilibrium vibrational kinetics. Ed.: M. Capitelly,
Springer-Verlag Berlin Heidelberg, 1986.

Kolesnichenko E.G. On kinetic equations for chemically reacting gases.
Thermophysics of High Temperatures, 1980, v. 18, N 1, pp. 55-62. (in Russian)

Prigogine 1., Xhrouet E. On the perturbation of Maxwell distribution function by
chemical reactions in a gas. Physica, 1949, 15, pp. 913-932.

Kolesnichenko E.G. Kinetic equations of the theory of chemically reactive gases.
Moscow State University, 1983, 148 pp. (in Russian)

Crarbs mocTymmia B pefakimio 25 ampesst 2011 .

41



