УДК 533.21

ЧИСЛЕННЫЙ МЕТОД РАСЧЕТА СВЕРХЗВУКОВЫХ ТУРБУЛЕНТНЫХ СТРУЙ

А.М. Молчанов

Московский авиационный институт (государственный технический университет) alexmol 2000@mail.ru

Аннотация

Разработана численная схема для расчета сверхзвуковых турбулентных течений в постановке полной системы уравнений Навье-Стокса (Рейнольдса). При представлении конвективных потоков использовалось расщепление Steger-Warming 1-го порядка аппроксимации. Для решения системы использовался метод Гаусса-Зейделя с линейной релаксацией, предложенный МакКормаком. Проведено расчетное исследование неизобарических струй в широком диапазоне изменения значений числа Маха на срезе сопла (от 0 до 4).

NUMERICAL METHOD FOR SUPERSONIC TURBULENT JETS

Numerical method for supersonic turbulent flows based on Navier-Stokes (Reynolds) full equation system has been developed. Steger-Warming flux vector splitting was used. Gauss-Seidel Line Relaxation (GSLR) method suggested by MacCormack was used to solve the system. Simulation of non-isobar jets in the wide range of Mach number (from 0 to 4) at the nozzle exit was carried out.

1 Введение

Расчету сверхзвуковых турбулентных струй посвящено немало работ (см. например, [1-3],[14],[15]. В большинстве работ используются параболизованные уравнения Навье-Стокса, либо используются стандартные программные комплексы.

В предыдущей работе автора [4] было проведено численное исследование турбулентных сверхзвуковых струй с использованием модели турбулентности, учитывающей влияние сжимаемости. Предложенная модель турбулентности позволила получить удовлетворительное совпадение результатов расчета и экспериментальных данных в широком диапазоне значений числа Маха.

В качестве средства расчета использовался программный комплекс ANSYS CFX.

Применение этого комплекса и других подобных средств CFD (FLUENT, FlowVision, Star-CD и т.п.) очень удобно для проведения расчетов более-менее стандартизированных задач, но порождает ряд проблем.

Это организационные проблемы (необходимость приобретения дорогостоящих лицензий), а также методические проблемы (сложности учета физических процессов, не предусмотренных в основной программе).

Целью данной работы является разработка численной схемы для расчета сверхзвуковых течений. Схема является неявной и безусловно устойчивой.

На основе этой схемы автором создана собственная компьютерная программа, апробированная на расчете сверхзвуковых турбулентных струй.

При разработке численного метода использовались идеи, изложенные в работах [5-8].

2 Система уравнений

Двумерное течение идеального газа в декартовой и цилиндрической системе координат описывается следующей системой уравнений

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} + \frac{\omega}{y} H = 0 \tag{2.1}$$

где

 $\omega = 0$ в случае плоского течения в декартовой системе координат (x, y), $\omega = 1$ в случае осесимметричного течения в цилиндрической системе координат (x, y)

$$U = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \end{bmatrix}, \tag{2.2}$$

$$F = \begin{bmatrix} \rho u \\ \rho u^{2} + p - \tau_{xx} \\ \rho uv - \tau_{yx} \\ \rho uH + q_{x} - u\boldsymbol{\tau}_{xx} - v\boldsymbol{\tau}_{yx} \end{bmatrix}, G = \begin{bmatrix} \rho v \\ \rho uv - \tau_{yx} \\ \rho v^{2} + p - \tau_{yy} \\ \rho vH + q_{y} - u\tau_{yx} - v\boldsymbol{\tau}_{yy} \end{bmatrix}, H = \begin{bmatrix} \rho v \\ \rho uv - \tau_{yx} \\ \rho v^{2} - \tau_{yy} + \tau_{\theta\theta} \\ \rho vH + q_{y} - u\tau_{yx} - v\boldsymbol{\tau}_{yy} \end{bmatrix} (2.3)$$

$$\tau_{xx} = \frac{2\mu}{3} \left(2\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} - \frac{\omega}{y} v \right),$$

$$\tau_{yy} = \frac{2\mu}{3} \left(-\frac{\partial u}{\partial x} + 2\frac{\partial v}{\partial y} - \frac{\omega}{y} v \right), \quad q_x = -\frac{\mu C_P}{\Pr} \frac{\partial T}{\partial x},$$

$$\tau_{yx} = \tau_{xy} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right), \quad q_y = -\frac{\mu C_P}{\Pr} \frac{\partial T}{\partial y}$$

$$\tau_{\theta\theta} = \frac{2}{3} \mu \left(-\frac{\partial u}{\partial x} + 2\frac{\omega}{y} v - \frac{\partial v}{\partial y} \right)$$
(2.4)

 ρ - плотность, u и v - компоненты скорости, E - полная внутренняя энергия, p - статическое давление, T - температура, μ - эффективный коэффициент динамической вязкости, \Pr - эффективное число Прандтля, C_p - удельная теплоемкость при постоянном давлении.

Удельная внутренняя энергия е связана с полной соотношением:

$$e = E - \frac{u^2 + v^2}{2} \tag{2.5}$$

Для идеального газа:

$$p = (\gamma - 1)e\rho, \tag{2.6}$$

где γ - показатель адиабаты.

3 Модель турбулентности

Эффективный коэффициент вязкости μ складывается из двух частей:

$$\mu = \mu_{mol} + \mu_T \tag{3.1}$$

где $\mu_{\!\scriptscriptstyle mol}$ - коэффициент молекулярной вязкости, $\mu_{\!\scriptscriptstyle T}$ - коэффициент турбулентной вязкости.

Для расчета μ_T использовалась модифицированная k- ϵ модель, учитывающая влияние высокоскоростной сжимаемости на интенсивность турбулентного смешения [4].

Общий вид уравнений этой модели:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} + \frac{\omega}{y} H = S, \qquad (3.2)$$

где

$$U = \begin{bmatrix} \rho k \\ \rho \varepsilon \end{bmatrix},\tag{3.3}$$

$$F = \begin{bmatrix} \rho u K - j_{Kx} \\ \rho u \varepsilon - j_{\varepsilon x} \end{bmatrix}, G = \begin{bmatrix} \rho v K - j_{Ky} \\ \rho v \varepsilon - j_{\varepsilon y} \end{bmatrix}, H = \begin{bmatrix} \rho v K - j_{Ky} \\ \rho v \varepsilon - j_{\varepsilon y} \end{bmatrix}$$
(3.4)

Диффузионные потоки K и ε определяются по формулам:

$$j_{Kx} = \frac{\mu}{\sigma_K} \frac{\partial K}{\partial x}; \quad j_{\varepsilon x} = \frac{\mu}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial x};$$

$$j_{Ky} = \frac{\mu}{\sigma_K} \frac{\partial K}{\partial y}; \quad j_{\varepsilon y} = \frac{\mu}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial y}$$
(3.5)

Источник в правой части (3.2) в работе [4] определяется как

$$S = \begin{bmatrix} P_K - (1 + C_M M_T) \rho \varepsilon \\ C_{\varepsilon 1} \frac{\varepsilon}{K} P_K - C_{\varepsilon 2} \rho \frac{\varepsilon^2}{K} \end{bmatrix}, \tag{3.6}$$

где

$$P_{K} = \mu \left[2 \left\{ \left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial v}{\partial y} \right)^{2} + \omega \left(\frac{v}{y} \right)^{2} \right\} + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^{2} \right] -$$
(3.7)

производство турбулентной энергии,

$$M_T = \sqrt{2k} / a \quad - \tag{3.8}$$

турбулентное число Маха, а – местная скорость звука

Коэффициент турбулентной вязкости рассчитывается по формуле:

$$\mu_{t} = C_{\mu} \frac{\rho k^{2}}{\varepsilon \left(1 + C_{M} M_{T}\right)} \tag{3.9}$$

В работе использовались следующие значения констант:

$$C_{\varepsilon 1} = 1.44; \quad C_{\varepsilon 2} = 1.92;$$
 $C_{\mu} = 0.09; \quad C_{M} = 0.29;$
 $\sigma_{K} = 1.0; \quad \sigma_{\varepsilon} = 1.3$
(3.10)

4 Преобразование координат

Для лучшего охвата области течения используем новую систему координат

$$\xi = \xi(x),$$

$$\eta = \eta(x, y)$$
(4.1)

Для струй это позволяет расширяющуюся по оси x область свести к прямоугольной расчетной области в системе (ξ, η) .

В новой системе координат основное уравнение (2.1) имеет вид:

$$\frac{\partial \overline{U}}{\partial t} + \frac{\partial \overline{F}}{\partial \xi} + \frac{\partial \overline{G}}{\partial \eta} + \frac{\omega}{y} \overline{H} = 0, \qquad (4.2)$$

где

$$\overline{F} = \frac{1}{\eta_y} F, \quad \overline{G} = \frac{1}{\xi_x} G + \frac{\eta_x}{\eta_y \xi_x} F, \tag{4.3}$$

$$\overline{U} = UJ$$
, $\overline{H} = HJ$, (4.4)

$$J = \det\left(\frac{\partial(x,y)}{\partial(\xi,\eta)}\right) = x_{\xi}y_{\eta} = \frac{1}{\eta_{y}\xi_{x}}$$
 (4.5)

якобиан матрицы преобразования,

$$\xi_x = \frac{\partial \xi}{\partial x}, \quad \eta_x = \frac{\partial \eta}{\partial x}, \quad \eta_y = \frac{\partial \eta}{\partial y}$$
 (4.6)

5 Конечно-объемная аппроксимация

Уравнение (4.2) можно аппроксимировать в прямоугольном контрольном объеме $(\Delta \xi, \Delta \eta)$ вокруг точки (i, j) следующим образом (см. рис.1, здесь ір – integration points – точки интегрирования):

$$\frac{\overline{U}_{i,j}^{n+1} - \overline{U}_{i,j}^{n}}{\Delta t} + \frac{\overline{F}_{i+1/2,j} - \overline{F}_{i-1/2,j}}{\Delta \xi} + \frac{\overline{G}_{i,j+1/2} - \overline{G}_{i,j-1/2}}{\Delta \eta} + \frac{\omega}{\gamma} \overline{H}_{i,j} = 0,$$
 (5.1)

где

$$\overline{F} = \alpha \overline{F}^{n+1} + (1-\alpha)\overline{F}^{n}, \quad \overline{G} = \alpha \overline{G}^{n+1} + (1-\alpha)\overline{G}^{n}, \quad \overline{H} = \alpha \overline{H}^{n+1} + (1-\alpha)\overline{H}^{n}, \quad (5.2)$$

Здесь верхние индексы означают номера шага по времени; по известным значениям искомой функции на n -ом шаге с помощью (5.1) определяются неизвестные значения на (n+1) -ом шаге.

Из соображений безусловной устойчивости схемы числовой коэффициент

$$\alpha \ge 0.5 \tag{5.3}$$

Вектора потока целесообразно разделить на две части: конвективную и вязкую

$$\overline{F} = \overline{F_C} + \overline{F_V}, \quad \overline{G} = \overline{G_C} + \overline{G_V}, \quad \overline{H} = \overline{H_C} + \overline{H_V}$$
 (5.4)

Линеаризуем конвективные потоки на (n+1)-ом шаге по времени

$$\overline{F_C}^{n+1} = \overline{F_C}^n + \left(\frac{\partial \overline{F_C}}{\partial \overline{U}}\right)^n \left(\overline{U}^{n+1} - \overline{U}^n\right) = \overline{F_C}^n + A^n \delta \overline{U}^{n+1}, \tag{5.5}$$

$$\overline{G_C}^{n+1} = \overline{G_C}^n + B^n \delta \overline{U}^{n+1}, \qquad (5.6)$$

$$\overline{H_C}^{n+1} = \overline{H_C}^n + C^n \delta \overline{U}^{n+1} \tag{5.7}$$

где

$$A^{n} = \left(\frac{\partial \overline{F_{C}}}{\partial \overline{U}}\right)^{n}, \quad B^{n} = \left(\frac{\partial \overline{G_{C}}}{\partial \overline{U}}\right)^{n}, \quad C^{n} = \left(\frac{\partial \overline{H_{C}}}{\partial \overline{U}}\right)^{n}$$
 (5.8)

Тогда формулы (5.2) для конвекции представляются в виде

$$\overline{F_C} = \overline{F_C}^n + \alpha A^n \delta \overline{U}^{n+1},$$

$$\overline{G_C} = \overline{G_C}^n + \alpha B^n \delta \overline{U}^{n+1},$$

$$\overline{H_C} = \overline{H_C}^n + \alpha C^n \delta \overline{U}^{n+1}$$
(5.9)

6 Расщепление конвективных потоков

Для более реалистичного отражения физики основных уравнений используется расщепление конвективных потоков (метод Steger-Warming [6]). Этот метод позволяет учитывать направление распространения информации в потоке.

Матрицы Якоби $A=\frac{\partial \overline{F_C}}{\partial \overline{U}}$ и $B=\frac{\partial \overline{G_C}}{\partial \overline{U}}$ с помощью преобразований подобия можно представить в виде

$$A = \left(S_{\xi}\right)^{-1} \Lambda_{A} S_{\xi} \,, \tag{6.1}$$

$$B = \left(S_{\eta}\right)^{-1} \Lambda_{B} S_{\eta} \,, \tag{6.2}$$

где Λ_A и Λ_B диагональные матрицы, состоящие из собственных значений соответствующих матриц A и B

$$\Lambda_{A} = \begin{pmatrix}
q_{\xi} & 0 & 0 & 0 \\
0 & q_{\xi} + a\xi_{x} & 0 & 0 \\
0 & 0 & q_{\xi} & 0 \\
0 & 0 & 0 & q_{\xi} - a\xi_{x}
\end{pmatrix} = \xi_{x} \begin{pmatrix}
u & 0 & 0 & 0 \\
0 & u + a & 0 & 0 \\
0 & 0 & u & 0 \\
0 & 0 & 0 & u - a
\end{pmatrix},$$
(6.3)

$$\Lambda_{B} = \begin{pmatrix} q_{\eta} & 0 & 0 & 0 \\ 0 & q_{\eta} & 0 & 0 \\ 0 & 0 & q_{\eta} + g & 0 \\ 0 & 0 & 0 & q_{\eta} - g \end{pmatrix},$$
(6.4)

$$g = a\sqrt{\eta_x^2 + \eta_y^2} \,, \tag{6.5}$$

$$q_{\xi} = \xi_x u,$$

$$q_{\eta} = \eta_x u + \eta_y v$$
(6.6)

В общем случае диагональные матрицы (6.3) и (6.4) имеют как положительные, так и отрицательные значения. Их знак определяет направление распространения информации в

потоке. Пусть $\Lambda_{A+}, \Lambda_{A-}$ - диагональные матрицы, которые содержат положительные и отрицательные элементы матрицы Λ_A соответственно.

В [6] показано, что

$$\overline{F_C} = A\overline{U} \tag{6.7}$$

Поэтому

$$\Lambda_{A} = \Lambda_{A+} + \Lambda_{A-}, \quad A_{+} = \left(S_{\xi}\right)^{-1} \Lambda_{A+} S_{\xi}, \quad A_{-} = \left(S_{\xi}\right)^{-1} \Lambda_{A-} S_{\xi},
A = A_{+} + A_{-}, ,
\overline{F_{C}} = A_{+} \overline{U} + A_{-} \overline{U}$$
(6.8)

где $A_{\downarrow}U$ - часть потока, идущего в точку интегрирования слева направо,

 $A_{L}U$ - часть потока, идущего в точку интегрирования справа налево (см.рис.2)

С учетом направления потока на поверхности, разделяющей объемы (i,j) и (i+1,j) , получаем:

$$\overline{F_C}_{i+1/2,i} = A_+ \overline{U}_L + A_- \overline{U}_R \tag{6.9}$$

Аналогично:

$$\overline{G_{C}}_{i,i+1/2} = B_{+}\overline{U}_{S} + B_{-}\overline{U}_{N},$$
 (6.10)

где $B_{\scriptscriptstyle +}\overline{U}_{\scriptscriptstyle S}$ - поток, идущий снизу, $B_{\scriptscriptstyle -}\overline{U}_{\scriptscriptstyle N}$ - поток, идущий сверху.

Обычный метод Steger-Warming [6] имеет первый порядок аппроксимации. В этом случае

$$\overline{U}_{L} = \overline{U}_{i,j}, \quad \overline{U}_{S} = \overline{U}_{i,j},
\overline{U}_{R} = \overline{U}_{i+1,j}, \quad \overline{U}_{N} = \overline{U}_{i,j+1}$$
(6.11)

7 Представление вязких потоков

Используется подход, предложенный в работе [8].

Вязкие потоки зависят, как от самой функции \overline{U} , так и от ее производных:

$$\overline{F_V} = \overline{F_V} \left(\overline{U}, \frac{\partial \overline{U}}{\partial \xi}, \frac{\partial \overline{U}}{\partial \eta} \right) = \overline{F_V} \left(\overline{U}, \overline{U}_{\xi}, \overline{U}_{\eta} \right); \quad \overline{G_V} = \overline{G_V} \left(\overline{U}, \overline{U}_{\xi}, \overline{U}_{\eta} \right)$$
(7.1)

Введем обозначения:

$$K = \frac{\partial \overline{F_V}}{\partial \overline{U}}; \quad L = \frac{\partial \overline{F_V}}{\partial \overline{U}_{\xi}}; \quad N = \frac{\partial \overline{G_V}}{\partial \overline{U}_{\eta}}; \quad M = \frac{\partial \overline{H_V}}{\partial \overline{U}_{\eta}}$$
 (7.2)

Вязкие потоки на (n+1) -ом слое можно выразить в виде

$$\left(\overline{F_{V}}\right)^{n+1} = \left(\overline{F_{V}}\right)^{n} + K^{n} \delta \overline{U}^{n+1} + L^{n} \delta \overline{U_{\xi}}^{n+1} + \left(\frac{\partial \overline{F_{V}}}{\partial \overline{U_{\eta}}}\right)^{n} \delta \overline{U_{\eta}}^{n+1};$$

$$\left(\overline{G_{V}}\right)^{n+1} = \left(\overline{G_{V}}\right)^{n} + \left(\frac{\partial \overline{G_{V}}}{\partial \overline{U}}\right)^{n} \delta \overline{U}^{n+1} + \left(\frac{\partial \overline{G_{V}}}{\partial \overline{U_{\xi}}}\right)^{n} \delta \overline{U_{\xi}}^{n+1} + N^{n} \delta \overline{U_{\eta}}^{n+1}$$
(7.3)

В [8] предполагается, что в смешанные производные невелики, и их влиянием на устойчивость в неявной части схемы можно пренебречь. Тогда вязкие потоки на (n+1)-ом слое можно выразить в виде

$$\overline{F_V}^{n+1} = \left(\overline{F_V}\right)^n + K^n \delta \overline{U}^{n+1} + L^n \delta \overline{U_\xi}^{n+1} =$$

$$= \left(\overline{F_V}\right)^n + \left(K^n - L_{\xi}^n\right) \delta \overline{U}^{n+1} + \frac{\partial}{\partial \xi} \left(L^n \delta \overline{U}^{n+1}\right)$$
(7.4)

Здесь предполагается локальная постоянность коэффициента вязкости, т.е. можно принять $\left(K^n-L_{\xi}^{n}\right)\approx 0$

Таким образом,

$$\overline{F_V}^{n+1} = \overline{F_V}^n + \frac{\partial}{\partial \xi} \left(L^n \, \delta \overline{U}^{n+1} \right) \tag{7.5}$$

$$\overline{G_V}^{n+1} = \overline{G_V}^n + \frac{\partial}{\partial \eta} \left(N^n \ \delta \overline{U}^{n+1} \right) \tag{7.6}$$

$$\overline{H_{V}}^{n+1} = \overline{H_{V}}^{n} + \frac{\partial}{\partial n} \left(M^{n} \delta \overline{U}^{n+1} \right)$$
(7.7)

Формулы для матриц L , N и M легко получаются из определения вязких потоков (2.4).

Например, матрица L имеет вид:

$$L = \frac{\partial \overline{F_V}}{\partial \overline{U}_{\mathcal{E}}} = \frac{\partial \overline{F_V}}{\partial V_{\varepsilon}} \frac{\partial V_{\xi}}{\partial \overline{U}_{\varepsilon}} = \frac{1}{J} M_{\xi} \frac{\partial V}{\partial U}, \qquad (7.8)$$

где

$$M_{\xi} = -\frac{\mu \xi_{x}}{\eta_{y}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{4}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & \frac{4}{3}u & v & \frac{\gamma}{\Pr} \end{pmatrix}, \tag{7.9}$$

$$\frac{\partial V}{\partial U} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
-\frac{u}{\rho} & \frac{1}{\rho} & 0 & 0 \\
-\frac{v}{\rho} & 0 & \frac{1}{\rho} & 0 \\
2\alpha - E & -\frac{u}{\rho} & -\frac{v}{\rho} & \frac{1}{\rho}
\end{pmatrix}$$
(7.10)

8 Окончательный вид системы уравнений конечно-объемной аппроксимации

Подставляем полученные соотношения для конвективных и вязких потоков (5.9), (6.9), (6.10), (7.5)-(7.7) в аппроксимирующее уравнение (5.1) и получаем:

$$\mathbf{A}_{i,j} \delta \overline{U}_{i,j}^{n+1} + \mathbf{B}_{i,j} \delta \overline{U}_{i,j+1}^{n+1} + \mathbf{C}_{i,j} \delta \overline{U}_{i,j-1}^{n+1} + \mathbf{D}_{i,j} \delta \overline{U}_{i+1,j}^{n+1} + \mathbf{E}_{i,j} \delta \overline{U}_{i-1,j}^{n+1} = \Delta \overline{U}_{i,j}^{n}$$
(8.1)

где

$$\mathbf{A}_{i,j} = I + \\ \alpha \Delta t \left(\frac{\left(A_{+} \right)_{i+1/2,j}^{n} - \left(A_{-} \right)_{i-1/2,j}^{n}}{\Delta \xi} + \frac{\left(B_{+} \right)_{i,j+1/2}^{n} - \left(B_{-} \right)_{i,j-1/2}^{n}}{\Delta \eta} + \frac{\omega}{y} C^{n} - \frac{2}{\Delta \xi^{2}} L_{i,j}^{n} - \frac{2}{\Delta \eta^{2}} N_{i,j}^{n} \right), \\ \mathbf{B}_{i,j} = \frac{\alpha \Delta t}{\Delta \eta} \left(\left(B_{-} \right)_{i,j+1/2}^{n} + \frac{1}{\Delta \eta} N_{i,j+1}^{n} + \frac{\omega}{2y} M_{i,j+1}^{n} \right), \\ \mathbf{C}_{i,j} = \frac{\alpha \Delta t}{\Delta \eta} \left(-\left(B_{+} \right)_{i,j-1/2}^{n} + \frac{1}{\Delta \eta} N_{i,j-1}^{n} - \frac{\omega}{2y} M_{i,j-1}^{n} \right), \\ \mathbf{D}_{i,j} = \frac{\alpha \Delta t}{\Delta \xi} \left(\left(A_{-} \right)_{i+1/2,j}^{n} + \frac{1}{\Delta \xi} L_{i+1,j}^{n} \right), \quad \mathbf{E}_{i,j} = \frac{\alpha \Delta t}{\Delta \xi} \left(-\left(A_{+} \right)_{i-1/2,j}^{n} + \frac{1}{\Delta \xi} L_{i-1,j}^{n} \right),$$

$$(8.2)$$

$$\Delta \overline{U}_{i,j}^{n} = -\Delta t \left[\frac{\overline{F_{C}}_{i+1/2,j}^{n} - \overline{F_{C}}_{i-1/2,j}^{n}}{\Delta \xi} + \frac{\overline{F_{V}}_{i+1/2,j}^{n} - \overline{F_{V}}_{i-1/2,j}^{n}}{\Delta \xi} \right]$$

$$-\Delta t \left[\frac{\overline{G_{C}}_{i,j+1/2}^{n} - \overline{G_{C}}_{i,j-1/2}^{n}}{\Delta \eta} + \frac{\overline{G_{V}}_{i,j+1/2}^{n} - \overline{G_{V}}_{i,j-1/2}^{n}}{\Delta \eta} \right] , \qquad (8.3)$$

$$-\Delta t \frac{\omega}{v} \left(\overline{H_{C}}_{i,j}^{n} + \overline{H_{V}}_{i,j}^{n} \right)$$

I - единичная матрица.

При представлении конвективных потоков используется первый порядок аппроксимации (6.11).

Значения векторов $\overline{F_C}_{i+1/2,j}^n$, $\overline{F_C}_{i-1/2,j}^n$, $\overline{G_C}_{i,j+1/2}^n$, $\overline{G_C}_{i,j-1/2}^n$ в явной части вычисляются непосредственно по формулам (6.9), (6.10) .

Для неявной части используются соотношения, следующие из (6.9), (6.10), (6.7) (6.11) Например,

$$A_{i+1/2,j}^{n} \delta \overline{U}_{i+1/2,j}^{n+1} = \left(A_{+}\right)_{i+1/2,j}^{n} \delta \overline{U}_{i,j}^{n+1} + \left(A_{-}\right)_{i+1/2,j}^{n} \delta \overline{U}_{i+1,j}^{n+1}$$

$$(8.4)$$

9 Граничные условия

Для рассматриваемого типа задач очень важно правильное задание условий на границах расчетной области.

1) Ось симметрии

Для оси симметрии на нижней границе расчетной области обычно добавляют слой фиктивных объемов, который расположен ниже оси симметрии. Этот слой имеет номер (j=1).

Для этой точки справедливо:

$$\overline{U}_{i,1} = E_{svm} \overline{U}_{i,2}, \qquad (9.1)$$

где

$$E_{sym} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \tag{9.2}$$

2) Вход

На левой границе, которая считается входом в расчетную область, задаются все газодинамические параметры, по которым рассчитывается вектор \overline{U} .

Для дозвукового входа давление не задается, а определяется аппроксимацией изнутри расчетной области с использованием инварианта Римана. В данной работе использовался

этот подход и более простой способ задания всех параметров на входе, включая давление. Отличия между двумя подходами несущественны.

3) Внешняя граница

Задание граничных условий подробно описано в работе [9]. Остановимся лишь вкратце на основных соотношениях.

Обозначим индексом ∞ параметры внешнего потока (за пределами расчетной области), индексом in - параметры внутри расчетной области. Экстраполируем характеристики из этих областей на границу

$$\rho - \frac{p}{a_0^2} = \rho_\infty - \frac{p_\infty}{a_0^2}$$

$$q_t = q_{t,\infty} ,$$

$$-\rho_0 a_0 q_n + p = -\rho_0 a_0 q_{n,\infty} + p_\infty$$

$$\rho_0 a_0 q_n + p = \rho_0 a_0 q_{n,in} + p_{in}$$
(9.3)

где q_t и q_n - тангенциальная и нормальная по отношению к границе составляющие скорости (q_n - направлена наружу из расчетной области).

Первые три условия (9.3) определяют экстраполяцию из внешнего потока, четвертое – изнутри расчетной области.

Для верхней границы параметры внутри расчетной области берутся в точках $j = N_y - 1$, где N_y - число расчетных точек по поперечной оси.

Индекс o относится к параметрам на границе на предыдущем шаге по времени.

Решая систему (9.3) относительно газодинамических параметров на внешней границе, получаем:

$$p = \frac{\rho_0 a_0}{2} (q_{n,in} - q_{n,\infty}) + \frac{1}{2} (p_{in} + p_{\infty}),$$

$$q_n = q_{n,in} + \frac{1}{\rho_0 a_0} (p_{in} - p),$$

$$\rho = \rho_{\infty} + \frac{p - p_{\infty}}{a_0^2},$$

$$q_t = q_{t,\infty}$$
(9.4)

Связь между компонентами скоростей имеет вид:

$$q_t = u\cos\varphi + v\sin\varphi$$

$$q_n = -u\sin\varphi + v\cos\varphi$$
(9.5)

Обратное преобразование:

$$u = q_t \cos \varphi - q_n \sin \varphi$$

$$v = q_t \sin \varphi + q_n \cos \varphi$$
(9.6)

3десь φ - угол наклона внешней границы.

4) Выход

Для сверхзвукового выхода используется простейшее соотношение

$$\frac{\partial^2 \overline{U}}{\partial \xi^2} = 0, \text{ r.e. } \overline{U}_{Nx} = 2 * \overline{U}_{Nx-1} - \overline{U}_{Nx-2}$$
(9.7)

Для дозвукового выхода применен подход подобный методу, использованному на внешней границе.

Снова обозначим индексом ∞ параметры внешнего потока (за пределами расчетной области), индексом in - параметры внутри расчетной области. Экстраполируем характеристики из областей внутри расчетной области на границу:

$$\rho - \frac{p}{a_0^2} = \rho_{in} - \frac{p_{in}}{a_0^2}$$

$$q_t = q_{t,in} , \qquad (9.8)$$

$$\rho_0 a_0 q_n + p = \rho_0 a_0 q_{n,in} + p_{in}$$

Давление полагаем равным

$$p = p_{\infty} \tag{9.9}$$

Здесь q_t и q_n - тангенциальная и нормальная по отношению к границе составляющие скорости (q_n - направлена наружу из расчетной области).

При расположении выходной границы перпендикулярно оси x система (9.8) и (9.9) имеет решение:

$$p = p_{\infty}$$

$$u = u_{in} + \frac{1}{\rho_0 c_0} (p_{in} - p_{\infty})$$

$$\rho = \rho_{in} + \frac{p_{\infty} - p_{in}}{c_0^2}$$

$$v = v_{in}$$
(9.10)

Газодинамические параметры $u_{in}, v_{in}, \rho_{in}, p_{in}$ внутри расчетной области определяются по общей формуле

$$f_{in} = 2 * f_{Nx-1} - f_{Nx-2}$$
 (9.11)

10 Решение системы

Для решения системы (8.1) используется метод, предложенный в работе [7].

Это итеративный метод Гаусса-Зейделя с линейной релаксацией в комбинации с векторной прогонкой.

На одном шаге по времени используются два прохода в направлении основного движения потока (в данном случае по оси ξ).

На следующем шаге по времени используются два прохода в направлении поперек движения потока (в данном случае – по оси η).

И так на каждом шаге по очереди меняя направление проходов.

Рассмотрим подробно первый вариант (по оси ξ); второй - аналогичен.

Для k = 1,3,... (k - номер итерации):

Проход в обратном направлении ($i = N_x - 1, N_x - 2, ..., 3, 2$)

$$\mathbf{B}_{i,j} \delta \overline{U}_{i,j+1}^{(k)} + \mathbf{A}_{i,j} \delta \overline{U}_{i,j}^{(k)} + \mathbf{C}_{i,j} \delta \overline{U}_{i,j-1}^{(k)} + \mathbf{D}_{i,j} \delta \overline{U}_{i+1,j}^{(k)} + \mathbf{E}_{i,j} \delta \overline{U}_{i-1,j}^{(k-1)} = \Delta \overline{U}_{i,j}^{n}$$
(10.1)

Проход в прямом направлении $i = 2, 3, ... N_{x-2}, N_{x-1}$

$$\mathbf{B}_{i,j} \delta \overline{U}_{i,j+1}^{(k+1)} + \mathbf{A}_{i,j} \delta \overline{U}_{i,j}^{(k+1)} + \mathbf{C}_{i,j} \delta \overline{U}_{i,j-1}^{(k+1)} + \mathbf{D}_{i,j} \delta \overline{U}_{i+1,j}^{(k)} + \mathbf{E}_{i,j} \delta \overline{U}_{i-1,j}^{(k+1)} = \Delta \overline{U}_{i,j}^{n}$$
(10.2)

В качестве нулевого приближения принимаем

$$\delta \bar{U}_{i,j}^{(0)} = \{0\} \tag{10.3}$$

В обоих случаях система представляет собой блочную трехдиагональную матрицу размерностью $(N_x - 1) \times (N_y - 1)$; каждый блок сам по себе является матрицей 4×4 .

Для замыкания системы используются граничные условия. Реально используется только условие на оси симметрии

$$\delta \overline{U}_{i,1} = E_{svm} \delta \overline{U}_{i,2} \tag{10.4}$$

На входе, выходе и на внешней границе при решении систем (10.2), (10.3) полагаем:

$$\delta \overline{U} = \{0\} \tag{10.5}$$

Системы, имеющие блочные трехдиагональные матрицы, легко решаются методом векторной прогонки.

В данной работе использовалось 2 итерации на каждом шаге по времени.

11 Метод решения системы уравнений для турбулентных характеристик (k, ε)

Система уравнений (3.2) решается аналогично системе (2.1).

Единственной особенностью является наличие источника S в правой части системы.

Представляем этот источник обычным образом:

$$\overline{S} = \overline{S}^{n} + \alpha \left(\frac{\partial \overline{S}}{\partial \overline{U}}\right)^{n} \delta \overline{U}^{n+1}$$
(11.1)

В результате в формуле для $\mathbf{A}_{i,j}$ в уравнении (8.1) появляется дополнительный член $\frac{\overline{S}}{\overline{U}} \Big|^n$

Система (3.2) решается на каждом шаге интегрирования после системы (2.1), т.е. эти системы решаются отдельно, а не совместно.

12 Результаты расчета

Для апробации изложенного численного метода был проведен ряд тестовых расчетов, которые сопоставлялись с экспериментальными данными. При выборе последних учитывалась достоверность данных (подробное описание экспериментальной установке и условия проведения эксперимента), а также возможность охватить как можно больший диапазон изменения параметров.

Тест 1. Полностью расширенная воздушная струя с равными температурами на срезе сопла и в окружающем пространстве [10].

Проведен расчет струй с числом Маха на срезе сопла $M_a=0.28\,$ и $M_a=1.37\,$, с давлением на срезе равным давлению окружающего пространства, т.е. $p_a=p_e$.

Струя нагревалась таким образом, чтобы получить температуру на срезе сопла равной температуре окружающего пространства $T_a = T_e = 288[K]$.

Использовалось профилированное сопло с угол полураскрытия на выходе равным нулю ($\theta_a = 0^\circ$). Радиус среза сопла $R_a = 25.5mm$. Рабочее тело — воздух.

На рисунках 3,4 представлены результаты расчета и сравнение с экспериментом.

Видно, начальная интенсивность турбулентности на срезе сопла сильно влияет на длину начального участка струи.

Рис.3. Тест 1. Распределение скорости вдоль оси струи при $M_a=0.28$. Линии — результаты расчета при различных значениях интенсивности турбулентности на срезе сопла; кружки — эксперимент [10].

Рис.4. Тест 1. Распределение скорости вдоль оси струи при $M_a=1.37$. Линии — результаты расчета при различных значениях интенсивности турбулентности на срезе сопла; треугольники — эксперимент [10].

Тест 2. Полностью расширенная холодная струя.

Проведен расчет струй с числом Маха на срезе сопла $M_a = 2.2\,$ и $M_a = 3\,$, с давлением на срезе равным давлению окружающего пространства, т.е. $p_a = p_e\,$.

Температура торможения в струе равна температуре окружающего пространства $T_{o,a} = T_e = 300[K]$. Радиус среза сопла задавался равным $R_a = 12.79mm$. Рабочее тело - холодный воздух.

На рисунках 5-7 показаны результаты расчета этих вариантов и экспериментальные данные из [11] ($M_a=2.2$) и [12] ($M_a=3$)

В обоих расчетах использовалось значение интенсивности турбулентности на срезе сопла $\sqrt{K_a} \ / \ U_a = 0.01$

Рис.5. Тест 2. Распределение скорости вдоль оси холодной струи при $M_a = 2.22$. Линии — результаты расчета; кружки — эксперимент [11].

Рис.6. Тест 2. Поперечные профили скорости в различных сечениях холодной струи при $M_a=2.22$. (a) - $X/R_a=16.9$, (b) - $X/R_a=16.9$ Линии – результаты расчета; кружки – эксперимент [11].

Рис.7. Тест 2. Распределение скорости вдоль оси холодной струи при $M_a=3$. Линии – результаты расчета; кружки – эксперимент [12].

Тест 3. Недорасширенная нагретая струя.

На рисунках 8-10 показаны результаты расчета струи с числом Маха на срезе сопла $M_a=1.95\,$ и степенью нерасчетности p_a / $p_e=1.21\,$. Температура торможения струи на 380[K] выше температуры окружающего пространства. Рабочее тело — воздух. Радиус среза сопла задавался равным $R_a=20mm$.

Сопоставление показывает, что в расчетах получается заниженная амплитуда колебаний скорости и температуры на начальном участке струи. Вероятно, это связано с тем, что в расчетах используется первый порядок аппроксимации при расщеплении конвективного потока (разности вверх по потоку).

На основном участке струи наблюдается хорошее совпадение результатов расчета с экспериментальными данными.

Рис.8. Тест 3. Распределение числа Маха вдоль оси недорасширенной нагретой струи при $M_a=1.95\,$ и p_a / $p_e=1.21\,$. Линии — результаты расчета; кружки — эксперимент [13].

Рис.9. Тест 3. Распределение нормированной температуры (T/T_e) вдоль оси недорасширенной нагретой струи при $M_a=1.95$ и $p_a/p_e=1.21$. Линии — результаты расчета; кружки — эксперимент [13].

Рис.10. Тест 3. Поперечные числа Маха в различных сечениях недорасширенной нагретой струи при $M_a=1.95$ и p_a / $p_e=1.21$. (a) - X / $R_{cr}=13.52$, (b) - X / $R_{cr}=33.78$, Линии — результаты расчета; кружки — эксперимент [13].

Тест 4. Недорасширенная холодная струя.

На рисунках 11, 12 показаны результаты расчета струи с числом Маха на срезе сопла $M_a=3.3\,$ и степенью нерасчетности p_a / $p_e=1.5\,$. Температура торможения струи равна температуре окружающего пространства.

Угол полураскрытия сопла на срезе $\theta_a=10^\circ$. Рабочее тело — холодный воздух. Радиус среза сопла $R_a=26.85mm$.

Рис.11. Тест 4. Распределение числа Маха вдоль оси недорасширенной холодной струи при $M_a=3.3\,$ и p_a / $p_e=1.5\,$. Линии — результаты расчета; кружки — эксперимент [14].

Рис.12. Тест 4. Распределение относительного значения давления Пито вдоль оси недорасширенной холодной струи при $M_a=3.3$ и p_a / $p_e=1.5$. Линии — результаты расчета; кружки — эксперимент [14].

Тест 5. Перерасширенная холодная струя.

На рисунках 13, 14 показаны результаты расчета струи с числом Маха на срезе сопла $M_a=3.3\,$ и степенью нерасчетности p_a / $p_e=0.5\,$. Температура торможения струи равна температуре окружающего пространства.

Угол полураскрытия сопла на срезе $\theta_a=10^\circ$. Рабочее тело — холодный воздух. Радиус среза сопла $R_a=40.5mm$.

Рис.13. Тест 5. Распределение числа Маха вдоль оси недорасширенной холодной струи при $M_a=3.3$ и p_a / $p_e=0.5$. Линии — результаты расчета; кружки — эксперимент [14].

Рис.14. Тест 5. Распределение относительного значения давления Пито вдоль оси недорасширенной холодной струи при $M_a=3.3$ и p_a / $p_e=0.5$. Линии – результаты расчета; кружки – эксперимент [14].

Тест 6. Перерасширенная горячая струя.

На рисунке 15 показаны результаты расчета струи с числом Маха на срезе сопла $M_a=4$ и степенью нерасчетности p_a / $p_e=0.65$. Температура торможения струи $T_0=2860K$. Радиус среза сопла $R_a=50mm$.

В расчетах в качестве рабочего тела струи использовался идеальный газ с показателем адиабаты $\gamma=1.26$ и молекулярной массой равной $26.75\frac{kg}{kmol}$. Окружающая среда — воздух при температуре $T_e=288[K]$.

Рис.15. Тест 6. Распределение относительного значения давления Пито вдоль оси недорасширенной горячей струи при $M_a=4$ и p_a / $p_e=0.65$. Линии — результаты расчета; кружки — эксперимент [15]. Синяя линия — сетка 201х61; зеленая — 601х101; красная — 901х121

Анализ результатов показывает, что при использовании грубой сетки (201x61) происходит сильное «размытие» волновой структуры на начальном участке струи. Расчеты с использованием сеток (601x101) и (901x121) практически совпадают.

Тест 7. Полностью расширенная холодная струя, истекающая в спутный поток.

На рисунках 16-17 показаны результаты расчета струи с числом Маха на срезе сопла $M_a=0.94\,$ с давлением на срезе равным давлению спутного потока пространства, т.е. $p_a=p_e$.

Число Маха спутного потока равно $M_e=1.3$. Температура торможения в струе равна температуре спутного потока $T_{o,a}=T_e=300[K]$.

Рабочее тело – воздух. Радиус среза сопла задавался равным $R_a = 20mm$.

Расчеты проводились при различных степенях интенсивностях турбулентности внешнего потока ($\sqrt{K_e}$ / U_e = 0.01 ÷ 0.05). Анализ показывает, что этот параметр очень сильно влияет на интенсивность турбулентного смешения.

Рис.16. Тест 7. Распределение относительной скорости U/U_e вдоль оси спутной холодной струи при $M_a=0.94$, $p_a=p_e$ и $M_e=1.3$. Линии — результаты расчета; кружки — эксперимент [16].

Рис.17. Тест 7. Распределение массовой концентрации воздуха, вытекающего из центрального сопла оси спутной холодной струи при $M_a=0.94$, $p_a=p_e$ и $M_e=1.3$. Линии – результаты расчета; кружки – эксперимент [16].

Тест 8. Сильно недорасширенная горячая звуковая струя

На рисунке 18 показаны результаты расчета струи со следующими параметрами:

Число Маха на срезе сопла $M_a=1$, температура торможения $T_0=1970K$, давление торможения $p_0=26.8\cdot 10^5 Pa$. Степень нерасчетности $p_a/p_e=14.16$. Радиус среза сопла $R_a=12.5mm$. В расчетах в качестве рабочего тела струи использовался идеальный газ с по-казателем адиабаты $\gamma=1.33$ и молекулярной массой равной $25\frac{kg}{kmol}$. Окружающая среда — воздух при температуре $T_e=288[K]$.

Рис.18. Тест 8. Распределение скорости в горячей сильно недорасширенной струе при $M_a=1$ и p_a / $p_e=14.16$. (а) — распределение скорости вдоль оси струи, (b) — поперечный профиль при X=300mm Линии — результаты расчета; кружки и треугольники— эксперимент [17].

Для всех расчетов использовались сетки от (201 x 61) до (1001 x 201) узлов. Время расчета одного варианта на компьютере Intel® CoreTM2 Duo CPU E4500 @2.2GHz, 1.99GB составляло от \sim 1 мин. до 15 минут.

13 Скорость сходимости решения

Для оценки скорости сходимости использовались невязки, рассчитанные по плотности. Средняя невязка задана формулой:

$$Res^{n} = \tau_{0} \sqrt{\frac{1}{(N_{X} - 1)(N_{Y} - 1)} \sum_{i,j=2,2}^{(N_{X} - 1),(N_{Y} - 1)} \left(\frac{\Delta \rho_{i,j}^{n}}{\Delta t \cdot \rho_{i,j}^{n}}\right)^{2}},$$
(13.1)

где суммирование осуществляется по внутренним узлам сетки:

$$i = 2,...,(N_X - 1); \quad j = 2,...,(N_Y - 1)$$

 $au_{_0}$ - характерное газодинамическое время течения (в данном случае берется: $au_{_0} = R_{_a} \, / \, u_{_a}$)

Максимальная невязка равна:

$$Res_{m}^{n} = \tau_{0} \max_{i,j} \left(\left| \frac{\Delta \rho_{i,j}^{n}}{\Delta t \cdot \rho_{i,j}^{n}} \right| \right)$$
 (13.2)

На рисунке 19 представлено изменение числа Куранта-Фридрихса-Леви, средней невязки и максимальной невязки в зависимости от номера итерации для теста 6.

Рис.18. Тест 6. Изменение числа Куранта-Фридрихса-Леви (a), средней невязки (b) и максимальной невязки (c) в зависимости от номера итерации

В первом случае число CFL меняется по линейному закону в зависимости от номера итерации, во втором — по квадратичному. В обоих случаях невязка выходит на пологий участок после примерно 900 итераций. На самом деле, для получения хорошей точности расчета достаточно ~ 600 итераций.

14 ЗАКЛЮЧЕНИЕ

Разработана численная схема для расчета сверхзвуковых турбулентных течений в постановке полной системы уравнений Навье-Стокса (Рейнольдса).

Схема является неявной и безусловно устойчивой.

Проведено расчетное исследование неизобарических струй в широком диапазоне изменения значений числа Маха на срезе сопла (от 0 до 4).

Сопоставление результатов расчета с экспериментальными данными показало в общем удовлетворительное совпадение.

Показано существенное влияние начальной интенсивности турбулентности на параметры струй.

К слабым местам метода следует отнести первый порядок аппроксимации конвективных членов, что привело к «размытию» волновой структуры на начальном участке струи.

Также трудно считать удовлетворительными результаты расчета течения в районе диска Маха.

ЛИТЕРАТУРА

- 1. Fairweather M., Ranson K.R. Prediction of underexpanded jets using compressibility-corrected, two-equation turbulence models. Progress in Computational Fluid Dynamics, Vol. 6, Nos. 1/2/3, 2006.
- 2. An Evaluation of Parameters Influencing Jet. Mixing Using the WIND Navier-Stokes Code. NASA/TM—2002-211727. August 2002. pp.1-23
- 3. Калтаев А. Ж., Найманова А. Ж. Об одном численном методе расчета сверхзвуковых пространственных струй. Матем. моделирование, 2002, 14:12, 105–116
- 4. Молчанов А.М. Расчет сверхзвуковых неизобарических струй с поправками на сжимаемость в модели турбулентности. // Вестник Московского авиационного института, 2009г., т.16, №1, стр. 38-48.
- 5. MacCormack R.W. A New Implicit Algorithm for Fluid Flow. Proc. // AIAA 13th CFD Conference, Snowmass, Colorado, pp.112-119, 1997.
- 6. Steger J. and Warming R.F. Flux Vector Splitting of the Inviscid Gasdynamics Equations with Application to Finite Difference Methods. // NASA TN-78605, 1979.
- 7. MacCormack R.W. Current Status of Numerical Solutions of the Navier-Stokes equations. // AIAA Paper No. 85-0032, 1985.
- 8. Tysinger T., and Caughey D. Implicit Multigrid Algorithm for the Navier–Stokes Equations. // AIAA Paper 91-0242, Jan. 1991.
- 9. Schmidt W., Jameson A. Euler Solvers as an Analysis Tool for Aircraft Aerodynamics. // Advances in Computational Transonics, edited by W. G. Habashi, Pineridge, 1985, pp. 371-404.
- 10. Lau J.C., Morris P.J., Fisher M.J. Measurements in subsonic and supersonic free jets using a laser velocimeter. // J. Fluid Mech., 1979, vol. 63, part 1, pp. 1-27
- 11. J.M. Eggers. Velocity profiles and eddy viscosity distributions downstream of a Mach 2.22 nozzle exhausting to quiescent air. // NASA TN D-3601, 1966.
- 12. Теория турбулентных струй. Под ред. Г.Н.Абрамовича. М. Наука, 1984, 720 с.
- 13. Keysar L., Degani D. Numerical Investigation of Axisymmetric Compressible Turbulent Jets. // AIAA Paper 2004-1107, p.1-25.
- 14. Сафронов А.В., Хотулев В.А. Результаты экспериментальных исследований сверхзвуковых холодных и горячих струйных течений, истекающих в затопленное пространств. // Физико-химическая кинетика в газовой динамике. 2008 год, том 6. www.chemphys.edu.ru/article/129/
- 15. Сафронов А.В. Метод расчета струй продуктов сгорания при старте. // Физико-химическая кинетика в газовой динамике. 2006 год, том 4. www.chemphys.edu.ru/media/files/2006-10-23-001.pdf
- 16. Eggers J.M., Torrence M.G. An experimental investigation of the mixing of compressible air jets in a coaxial configuration. // NASA TN D-5315, July 1969.
- 17. Chauveau C., Davidenko D.M., Sarh B., Gökalp I., Avrashkov V, Fabre C. PIV Measurements in an Underexpanded Hot Free Jet. // 13th Int Symp on Applications of Laser Techniques to Fluid Mechanics.Lisbon, Portugal, 26-29 June, 2006. Paper No 1161.

Статья поступила в редакцию 16 июля 2009 г.