УДК 533

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ СВЕРХЗВУКОВЫХ ХОЛОДНЫХ И ГОРЯЧИХ СТРУЙНЫХ ТЕЧЕНИЙ, ИСТЕКАЮЩИХ В ЗАТОПЛЕННОЕ ПРОСТРАНСТВО

Сафронов А.В., Хотулев В.А.

ЦНИИМАШ, г.Королев avsafron@gmail.com

Аннотация

Приведены результаты экспериментальных исследований характеристик струйных течений соответствующим модельным и близким к натурным условиям при старте ракет. В результате обобщения данных получены зависимости для разработки инженерных методик и верификации численных моделей.

RESULTS OF EXPERIMENAL RESEARCHES OF THE SUPERSONIC COLD AND HOT JET

The results of experimental researches of the characteristics of jet currents appropriate modelling o conditions and are given at start of rockets. As a result of generalization of the data the dependences for development of engineering techniques and verification of numerical models are received.

В случае истечения сверхзвуковой недорасширенной или перерасшренной струи в затопленное пространство в потоке возникает сложная система волн разрежения и скачков уплотнения, особенно интенсивных на начальном участке струи. Наряду с этим происходит турбулентное смешение газов истекающей струи с воздухом, приводящее к выравниванию давления в потоке с давлением внешней среды на основном участке струи. Кроме того, в натурных и горячих модельных струях происходит догорание топлива.

Как показал анализ, известные данные систематических измерений характеристик турбулентных струйных течений [1-9] хотя и многочисленны, но в основном получены на холодных струях и с числами Маха на срезе сопла $M_a < 3$. Вместе с этим натурные струи при старте ракет имеют температуру в камере T_{κ} до 3700К и диапазон чисел Маха на срезе сопла $M_a=3 \sim 4$. Поэтому с целью восполнения экспериментальных данных для условий старта, проведены измерения характеристик струйных течений в диапазонах чисел Маха на срезе сопла $M_a=2.5-4.0$, нерасчетностей $n=P_a/P_e=0.5-3.3$. В качестве рабочего тела использовался сухой воздух при температуре в камере $T_{\kappa}=300$ К, а также продукты сгорания твердотопливных наполнителей имеющих температуру в камере $T_{\kappa}=2250$ К и 2850К.

Эксперименты проводились на установках У2ГД и УТТ отдела 2123 ЦНИИМАШ.

Стенд У2-ГД – рабочее тело воздух. Тяга до 10кН. Расстояния от среза сопла до модели: до 5м. Параметры в камере: температура T_{κ} =300К, давление P_{κ} до 12 МПа, диаметр среза сопла D_a =50-100мм. На стенде имеется возможность движения модели в процессе испытаний со скоростью 10мм/с. Время испытаний на стенде У2-ГД до 2-3 мин.

Установка УТТ – твердотопливный газогенератор (ГГ) с тягой до 10кН, устанавливаемый на подвижной траверсе. Расстояния от среза сопла до модели: до 4м. Параметры в камере сгорания: температура T_к=2200–3640К, давление P_к до 20 МПа. Диаметр

среза сопла D_a=50–100мм. Измерения проводятся как при стационарном положении модели так и при движении газогенератора под действием собственной тяги. Время пуска 2–3 сек.

Измерения давления в представленных данных проводились малогабаритными потенциометрическими датчиками давления типа МДД-ТЕ с паспортной погрешностью 3%.

Измерения температур газа проводились с помощью преобразователей температуры газа И210.1150.000ТУ на основе вольфрам-рениевых термопар с диаметром спая 0.05 - 0.1 мм имеющих тарировочную погрешность 5%. Поправки на лучистый теплообмен вычислялись по разности измерений температур газа термопарами, имеющими различные диаметры спаев с помощью монограмм работы [10]. Эти поправки достигали уровня 200К.

В свободных струях термопары и заборники давления устанавливались с помощью гребенок.

В качестве заборников давления в холодных испытаниях применялись медицинские иглы диаметром 1.5мм. При этом статического давление измерялось с помощью бокового отверстия, которое располагалось на расстоянии ~ 4 диаметра от острия иглы ориентированной навстречу потоку.

Заборник полного давления для горячих испытаний представлял собой молибденовую трубку диаметром 5 мм и длиной 20мм.

Гребенки для измерения температуры торможения потока имели радиус скругления 10мм, при выступе спая термопары на 4-5мм, что обеспечивало обтекание спая дозвуковым потоком. По оценкам, данные измерений близки к равновесной температуре торможения потока.

Регистрация измеряемых параметров проводились с частотой опроса 50-100Гц с помощью системы измерений И23.1937.2220.001.

На рис. 1 приведены обобщенные зависимости изменения относительной скорости на оси основного изобарического участка холодной струи. Диапазон изменения чисел Маха на срезе сопла $M_a=2.5-3.8$, степени нерасчетности $n=P_a/P_e=0.5-1.5$. В испытаниях применялись профилированные сопла с выходным диаметром $D_a=44$ мм.

Рис. 1. Обобщение экспериментальных данных по изменению осевой скорости на основном участке струи To=300K, Ma=2.5 - 3.8, Pa/Pe=0.5-1.5.

Как видно, результаты экспериментов обобщаются зависимостью: $U/U_j=1-\exp(-0.357/f-3.5/f^2)$, при f<6, где f=X/X_C (1)

где X_C – длина начального участка струи, которая описывается с расширением диапазона формулы полученной в работе [1]:

$$X_{\rm C}/R_{\rm i}=0.44+10.44{\rm Ma}^{0.9},$$
 (2)

Здесь U_i, R_i- скорость на срезе и радиус «эффективного» расчетного сопла.

Аппроксимация (1) получена по данным измерений изобарических струй. Данные неизобарических струй отнесенные к «эффективным» параметрам также приведенные на графике (1) согласуются с этой аппроксимацией, что свидетельствует о достоверности концепции об «эквивалентном смешении». Отметим «отслоение» данных при $M_a=1$ от обобщения в диапазоне $M_a=2-4$.

Рис. 2. Сравнение полученной аппроксимации с данными зарубежных авторов

На рис. 2 показаны часто цитируемые данные работы [2] полученные для M_a=2.2 и работы [3] для M_a=2.0. Как видно имеется хорошее согласование полученной аппроксимации с этими данными.

Рис. 3. Экспериментальные зависимости длины начального (Xs) и сверхзвукового (Xn) участков холодной струи от числа Маха на срезе. Линии - данные на основе аппроксимации скорости.

С помощью зависимости (1) с учетом того, что температура торможения в потоке 300К получены изменения длины сверхзвукового участка струи (где число Маха на оси M=1)

от числа Маха на срезе. На рис. 3 приведено сравнение полученных изменений характерных длин струи с известными данными работ [1,4-6], представляющих собой обобщение серий испытаний.

Как видно полученная аппроксимация (1) согласуется с имеющимися данными различных авторов.

Таким образом, зависимость (1) можно рекомендовать для тестирования и калибровки моделей турбулентности в части влияния числа Маха на интенсивность смешения в диапазоне изменения чисел Маха на срезе сопла M_a=2–4.

			Таблица 1.
Данны	е испытаний.	Ma=2.8, Pa/Pe	е = 3.2, То=2250К
X/D_a	Р _к , МПа	T_0,K	$(P_0 - P_e) / P_e$
10	9.8	2233	3.80
10	11.5	2475	6.75
20	9.5	2500	7.60
20	10.2	2470	6.00
30	12.0	2725	4.00
30	12.0	2575	4.70
40	9.4	2710	2.10
40	10.2	2700	2.00
50	11.8	2672	1.00

С целью исследования влияния догорания в струе проведены измерения температуры на оси струи твердого наполнителя НМФ-2. Испытания проводились при стационарном положении газогенератора на установке ТТ. Параметры в камере: давление $P_{\kappa}=9.5-12M\Pi a$, температура $T_{\kappa}=2250$ К. Параметры на срезе сопла: число Маха $M_a=2.8$, средняя степень нерасчетности $P_a/P_e = 3.2$, массовая концентрация догорающих компонент – водорода $[H_2] = 0.02$, окиси углерода [CO]=0.464. Диаметр среза сопла $D_a=67.4$ мм. Данные измерений температуры торможения (T_0) и давления Пито (P_0) на оси струи приведены в табл.1.

Рис. 4. Экспериментальные зависимости давления торможения и температуры торможения на оси струи продуктов сгорания. То=2840, Ma=3.24, Pa/Pe=0.73, [H2]=0.01, [CO]=0.29.

Как видно в случае наполнителя НМФ-2 температура на расстояниях 30-50 калибров выше, чем температура в камере. Это обусловлено догоранием H₂ и CO при смешении струи продуктов сгорания с воздухом. В работах [11,12] представлена математическая модель этого процесса и приведено сравнение измерений табл.1 с результатами расчетов с учетом и без учета догорания.

Более детальные измерения на УТТ проводились при движении газогенератора с применением твердотопливного наполнителя ВИК-2Д имеющего температуру в газогенераторе T_{κ} =2840К. Параметры на срезе сопла: число Маха M_a =3.24, степень нерасчетности n=0.73, массовое содержание догорающих компонент – [H₂]=0.01, окиси углерода [CO]=0.29.

Данные измерений приведены на рис. 4. В работе [13] приведено сравнение результатов численных расчетов с применением различных маршевых моделей и измерений.

Экспериментальные данные по изменению давления Пито на оси струи наполнителя ВИК-2Д с параметрами на срезе Ma=4, n=0.65 в сравнении с расчетом приведены в работах [11,12].

Рис. 5. Замеренное давление в окрестности критической точки на преграде Ma=4.0, Pa/Pe=0.7, To=300K, Da=48мм

На рис. 5. приведено замеренное давление на преграде в окрестности критической точки холодной струи M_a=4.0, n=0.7 при движении преграды относительно сопла на стенде У-2ГД. Здесь заборники давления устанавливались заподлицо с поверхностью преграды.

С целью детального исследования характеристик течения на начальном неизобарическом участке струи проведены измерения статического давления и давления Пито в струях холодного воздуха. По этим давлениям, с учетом постоянства температуры торможения в струе T₀=300 получены числа Маха на оси струи.

Результаты измерений характеристик на оси недорасширенной струи M_a =3.3, n=1.5 с применением профилированного сопла D_a =53.7мм, угол полураскрытия θ_a =10° приведены на рис.6. Для этого случая характерно регулярное отражение скачков от оси.

Результаты измерений параметров на оси перерасшренной струи Ma=3.3, n=0.5 с применением профилированного сопла D_a =81.0мм, угол полураскрытия θ_a =11° приведены на рис.7. В этом случае имеется малый диск Маха в первой бочке, который заметен при расслоении максимумов статического давления и давления Пито.

Таким образом, получены экспериментальные данные по характеристикам холодных и горячих изобарических и неизобарических струйных течений в диапазоне числе Маха на срезе сопла M_a=2–4.

Рис. 6. Экспериментальные зависимости давления Пито, числа Маха и статического давления на оси струи To=300K, Ma=3.3, Pa/Pe=1.5, Teta=10.

Результаты могут быть применены для разработки инженерных методик расчета течений на основном участке струи, а также для верификации моделей турбулентной вязкости и численных моделей неизобарических догорающих струйных течений.

Рис. 7. Экспериментальные зависимости давления Пито, числа Маха и статического давления на оси струи To=300K, Ma=3.3, Pa/Pe=0.5, Teta=11.

Работа выполнена при поддержке гранта РФФИ 07-01-13505-офи_ц.

Литература

- 1. Nagamatsu, H.T. and Horvay, G., "Supersonic Jet Noise", AIAA Paper 70-237, January 1970.
- 2. Eggers, J.M. Velocity Profiles and Eddy Viscosity Distributions Downstream of a Mach 2.22 Nozzle Exhausting to Quiescent Air. NASA TN D-3601, September 1966
- 3. Seiner, J.M., Ponton, M.K., Jansen, B.J., and Lagen, N.T. The Effect of Temperature on Supersonic Jet Noise Emission. DGLR/AIAA Paper 92-02-046, May 1992
- 4. Красоткин В.С., Мышанов А.И., Шалаев С.П., Широков Н.Н. и Юделович М.Я. Исследования сверхзвуковых изобарических турбулентных струй. МЖГ №4,1988.
- 5. Погорелов В.И. Параметры определяющие дальнобойность сверхзвуковой газовой струи. ЖТФ т.47 №2, 1977
- 6. Lou J.C. Mach namber and temperature effects on jets.- AIAA J. 1980 v.18 №6.
- 7. Witze, P.O. Centerline Velocity Decay of Compressible Free Jets. AIAA Journal, Vol. 12, No. 4, April 1974, pp. 417-418.
- 8. Абрамович Г.Н. Теория турбулентных струй. М:Наука. 1984.
- 9. Анцупов А.В., Благосклонов В.И. О структуре сверхзвуковой струи, истекающей в затопленное пространство. Труды ЦАГИ, вып.1781, 1976.
- 10. Сенкевич М.В. Экспериментальное исследования теплообмена в устройствах эжекционного типа. Диссертация. ЦНИИМАШ, 1969.
- 11. Сафронов А.В. Метод расчета струй продуктов сгорания при старте.//Физико-химическая кинетика в газовой динамике.2006. Том 4. http://chemphys.edu.ru/2006-10-23-001.pdf.
- 12. Сафронов А.В. Численный метод расчета струй продуктов сгорания при старте ракет. Космонавтика и ракетостроение. 2007 вып. 1(46), 72-79.
- 13. Сафронов А.В. Разносный метод решения стационарных уравнений газодинамики на основе соотношений на разрывах. Космонавтика и ракетостроение. 2008 вып. 1(50), 31-35.

Статья поступила в редакцию 7 августа 2008 г.