УДК 551.510.42:629.7.036.54.63

ИЗМЕРЕНИЕ И АНАЛИЗ ИНТЕНСИВНОСТИ УФ ИЗЛУЧЕНИЯ ПЛАЗМЕННОГО ОБРАЗОВАНИЯ ПО ТРАЕКТОРИИ СПУСКА С ОРБИТЫ СА «СОЮЗ-ТМА» ПО ДАННЫМ НАБЛЮДЕНИЙ С БОРТА МКС

Пластинин Ю.А., Карабаджак Г.Ф., Власов В.И., Горшков А.Б., Залогин Г.Н.

Центральный научно-исследовательский институт машиностроения (ЦНИИмаш), Королев, Московская область, Россия Email:yuplast@tsniimash.ru

Аннотация

Приведены результаты экспериментальных и теоретических исследований силы ультрафиолетового (УФ) излучения плазменного образования при входе в атмосферу Земли спускаемого аппарата (СА) «Союз - ТМА» в диапазоне скоростей 3 - 7 км/сек и высот H = 46 – 80 км.

Abstract

Results of experimental and theoretical investigations are presented of ultra-violet (UV) radiation of plasma structure along the re-entry trajectory in the Earth's atmosphere of space vehicle "Soyuz-TMA" in the velocity and altitude range 3-7 km/sec and H = 46 - 80 km.

Ранние (60-е годы прошлого века) исследования излучения высокотемпературного воздуха были направлены в основном на определение его вклада в тепловые нагрузки на космические спускаемые аппараты, входящие в атмосферу Земли с орбиты искусственного спутника или после возвращения из экспедиций на Луну или к другим планетам солнечной системы. Такие исследования проводились в предположении, что газ в ударном слое находится в термохимическом равновесии. При этом основные трудности заключались в определении зависимости коэффициентов поглощения газом излучения от температуры, давления и длины волны. Подобные данные о воздухе затабулированы [1, 2], что позволяет считать проблему равновесной радиационной газовой динами в общем решенной, по крайней мере, при рассмотрении задач входа летательных аппаратов (ЛА) в атмосферу Земли.

Несколько позднее (60-70-е годы) вместе с исследованиями неравновесных физикохимических процессов и определения их кинетических характеристик начали проводиться и исследования характера излучения воздуха за фронтом ударных волн [3, 4]. Как показали упомянутые исследования, при скоростях входа в атмосферу, меньших 2-й космической, излучение ударного слоя не оказывает заметного влияния на величину тепловых потоков. Однако и в этих условиях процессы излучения могут играть важную, а для некоторых задач и доминирующую, роль. В частности они влияют на структуру и свечение плазменных образований около ЛА, летящих в атмосфере с гиперзвуковой скоростью. Эти эффекты необходимо принимать во внимание при решении задач астроориентации и навигации ЛА. В этом случае необходимы достаточно точные данные об интенсивности излучения ударного слоя даже при низких скоростях (V \leq 3-4 км/c) полета аппарата, так как оно может значительно превосходить по интенсивности принимаемое ими излучение звезд.

Процессы излучения необходимо учитывать в разрядных камерах высокочастотных индукционных плазмотронов, которые в настоящее время широко используются при решении аэрофизических задач, а также других высокотемпературных газодинамических установках. Кроме того, излучательные процессы используются для дистанционной (спектральной) диагностики параметров (температуры и состава газа) низкотемпературной плазмы.

Разработка физико-химических и излучательных моделей высокотемпературного неравновесного воздуха, включающая выбор определяющих процессов и их кинетических характеристик (сечений или констант скоростей), проводится, как правило, на основании экспериментальных исследований, проводимых в ударных трубах. Поскольку такого рода исследования проводятся с ограниченным набором параметров (давлений и скоростей ударных волн), основным критерием правильности таких моделей является сравнение расчетов интенсивности излучения, полученной с их использованием, и данных соответствующих измерений, проведенных в условиях спуска СА в атмосферу. В связи с большими техническими сложностями проведения космических экспериментов и большой стоимостью их количество ограничено.

Особенную сложность для регистрации представляет излучение в УФ области спектра. Такое излучение не может быть зарегистрировано с поверхности Земли из-за его поглощения нижними слоями атмосферы, в частности озонным слоем на высотах Н ~ 20-30 км. Проведение наблюдения и регистрация такого рода излучения возможно только с самого СА или с аппарата, движущегося по орбите искусственного спутника Земли, поскольку верхние слои атмосферы прозрачны для УФ излучения.

Излучение в УФ диапазоне длин волн от возвращаемых космических аппаратов ранее экспериментально исследовалось в специально поставленных космических экспериментах (программа Bow Shock, аппарат Skipper) при скоростях входа в атмосферу Земли 3.5 [5] и 5 км/сек [6]. Интенсивность излучения ударного слоя регистрировалась в этих экспериментах приборами, расположенными на борту аппарата. Теоретический анализ излучения для условий этих экспериментов был выполнен в [7] и [8], а также авторами настоящей работы [9, 10].

Измерения УФ излучения плазменного образования СА «Союз- ТМА», анализируемые в настоящей работе, были проведены с борта МКС, общий вид которой показан на рис.1, в ночных условиях наведения с помощью высокочувствительной радиометрической УФ «Фиалка-МВ-Космос». Проведено сопоставление результатов расчетов и камеры экспериментов по силе излучения от плазменного образования в области спектра 230-370 нм. Полученные данные представляют большую ценность для верификации существующих и разрабатываемых газодинамических, термохимических радиационных И моделей гиперзвукового обтекания СА, в том числе многоразовых аппаратов планирующего спуска.

Наблюдение излучения плазменных образований около спускаемых аппаратов, отделившихся от МКС, с борта МКС имеет важное преимущество по сравнению с наблюдением с Земли. Оно связано с тем, что оба объекта (МКС и СА) достаточно длительное время движутся с близкими скоростями, не удаляясь друг от друга на очень большие расстояния. Это позволяет проводить регистрацию излучения ударного слоя практически во всем диапазоне высот (H = 100 – 30 км), где оно имеет достаточную интенсивность.

Рис.1. Общий вид орбитальной космической станции МКС

Рис.2. Общий вид СА" Союз – ТМА"

Описание эксперимента

В ходе проведения КЭ «Релаксация» с борта МКС выполнено экспериментальное исследование в ночных условиях силы излучения в УФ области спектра 230-370 нм от плазменного образования около СА «Союз-ТМА» в атмосфере Земли. Для измерения

абсолютной интенсивности вдоль траектории использовалась высокочувствительная оптическая система «Фиалка-MB-Космос», размещенная на МКС. Система аналогична той, которая находилась на борту пилотируемой станции «Мир» [11], но более чувствительная по порядку величины. Измерения были сделаны, используя высокочувствительную солнечно-слепую УФ камеру с усилителем яркости с ССД матричной камерой в качестве конечного регистратора изображения. Порог чувствительности составил ~ $1.7 \cdot 10^{-17}$ Вт/см², поле зрения – 10.5° и мгновенное поле зрения пикселя изображения – $2 \cdot 10^{-4}$ рад.

Возвращаемый аппарат «Союз» представляет собой сегментально-коническое тело – сферический 30-ти градусный сегмент с радиусом R = 2,32 м, переходящий в обратный конус с углом полураствора 7°. Линия сопряжения сегмента и конуса скруглена по радиусу r/R=1/50. Общий вид аппарата «Союз TM» показан на рис.2.

Транспортный корабль, отделяющийся от МКС, состоит из трех отсеков – собственно СА и двигательного и стыковочного отсеков. На высоте $H \sim 10$ км происходит отделение СА от двух других отсеков, которые отстают от СА и сгорают в атмосфере. Процесс разделения хорошо виден на получаемых изображениях (рис.3). На высоте H = 96 км разделение отсеков только начинается (рис. 3а). На высоте H = 70 км разделение завершилось и СА удаляется от других отсеков (рис.3б). На меньших высотах наблюдение велось только за спуском СА (рис.3в).

Рис. 3. Вход в плотные слои атмосферы транспортного корабля a) H = 96 км, V = 7.6 км/c; б) H = 70.1 км, V = 7.5 км/c; в)H = 50 км, V = 5.8 км/c

Таблица 1

Н, км	V∞, м/с	$\operatorname{Re}_{\infty,\operatorname{Rb}}$	Р∞, атм	Т∞, К
80.5	7604	$2.61 \cdot 10^4$	1.00.10-5	184.9
70.1	7510	1.06·10 ⁵	5.67·10 ⁻⁵	218.7
60.7	7109	3.00·10 ⁵	2.17.10-4	251.0
52.6	6116	6.17·10 ⁵	6.07·10 ⁻⁴	274.0
45.6	4537	1.09·10 ⁶	1.43.10-3	272.3

Калибровка абсолютной чувствительности аппаратуры была осуществлена на базе измерений излучения звезд, используемого как калибровочный источник. Регистрация входа СА начиналась с высоты 99 км. Изменение скорости с высотой полета СА приведено на рис. 4 и в таблице 1, там же представлены угол наблюдения в соответствии со схемой, показанной

на рис.5, где МГ СА и МГ МКС – местные горизонты в точках СА и МКС, H_{CA} и H_{MKC} – высоты СА и МКС, S –дальность между МКС и СА, β – угол наблюдения между S и осью СА, , η – угол между \vec{V}_{CA} и S, α – угол атаки (между \vec{V}_{CA} и осью СА), (XYZ)_{OCK} – орбитальная система координат в точке МКС. Угол атаки аппарата в рассматриваемом диапазоне высот был примерно постоянен и равен 22°. В таблице 2 представлены результаты измерений силы излучения I (Вт/ср) в полосе чувствительности УФ камеры, приведенной на рис.6.

Рис.4. Модуль скорости СА «Союз-ТМА» в гринвичской системе координат в зависимости от высоты полета.

Рис.5. Схема наблюдения полета СА с борта орбитальной станции МКС

Рис.6. Полоса пропускания приемной аппаратуры

На рис.7 показан общий вид используемого оборудования, а в таблице 2 его основные характеристики.

Рис. 7. Общий вид используемого оборудования.

Таблица 2. Основные характеристики УФ-камеры

Рабочая область длин волн, нм	200-360
Широкополосный УФ - фильтр, нм	240-360
Эффективный диаметр телескопа, мм	55

Длина фокуса телескопа	78
Поле зрения, градус	10,5
Угловое разрешение, угл. мин.	5.8
Максимальный коэффициент усиления изображения	$\sim 3 \cdot 10^4$
Пороговая чувствительность, Вт/м ²	2.10-13

Численный метод

Измерения излучения от плазменного образования, образующегося при входе аппарата «Союз» в атмосферу, производились в ближнем ультрафиолете. Основной вклад в этом диапазоне спектра вносит излучение от высокотемпературного ударного слоя на лобовой стороне СА.

Ударный слой на боковой поверхности и след практически не излучают в ультрафиолете из-за относительно низкого уровня температур, которые здесь наблюдаются. По этой же причине при расчете УФ излучения можно не рассматривать пограничный слой. Поэтому вычисления были выполнены только для лобовой и небольшой части боковой поверхности аппарата (0.15 R), чтобы получить сверхзвуковое течение на выходной границе расчетной области и тем самым исключить влияние вверх по потоку.

Для численного моделирования использовались трехмерные уравнения Эйлера, дополненные уравнениями неразрывности для отдельных химических компонент и записанные в консервативном виде в произвольной системе координат. Уравнения имеют вид:

.....

....

•••

$$\frac{\partial \mathbf{Q}}{\partial t} + \frac{\partial \mathbf{E}}{\partial \xi} + \frac{\partial \mathbf{F}}{\partial \eta} + \frac{\partial \mathbf{G}}{\partial \zeta} = \mathbf{S}$$

$$\xi = \xi(x, y, z), \quad \eta = \eta(x, y, z), \quad \zeta = \zeta(x, y, z)$$

$$J = \partial(\xi, \eta, \zeta) / \partial(x, y, z)$$

$$\mathbf{E} = J^{-1}(\xi_x \mathbf{E} + \xi_y \mathbf{F} + \xi_z \mathbf{G}); \quad \mathbf{F} = J^{-1}(\eta_x \mathbf{E} + \eta_y \mathbf{F} + \eta_z \mathbf{G})$$

$$\mathbf{G} = J^{-1}(\zeta_x \mathbf{E} + \zeta_y \mathbf{F} + \zeta_z \mathbf{G}); \quad \mathbf{S} = J^{-1}(0, 0, 0, 0, \omega_i)$$

$$\mathbf{G} = J^{-1}(\zeta_x \mathbf{E} + \zeta_y \mathbf{F} + \zeta_z \mathbf{G}); \quad \mathbf{S} = J^{-1}(0, 0, 0, 0, \omega_i)$$

$$\mathbf{G} = J^{-1}(\zeta_x \mathbf{E} + \zeta_y \mathbf{F} + \zeta_z \mathbf{G}); \quad \mathbf{S} = J^{-1}(0, 0, 0, 0, \omega_i)$$

$$p_{ij} = \int_{ij} \rho_{ij} \frac{\rho_{ij}}{\rho_{ij}}; \quad \mathbf{E} = \begin{pmatrix} \rho_{ij} \rho_{ij}$$

На поверхности тела использовались условия непротекания (нормальная к поверхности скорость $V_n = 0$). На плоскости симметрии использовались условия четности и нечетности параметров потока. На выходной границе применялась экстраполяция первого или второго порядка точности. На ударной волне ставились условия Ренкина-Гюгонио. Значения концентраций компонентов при переходе через скачок уплотнения считались замороженными. Вычисления были выполнены на сетке 50×30×40 (в продольном, поперечном и окружном направлениях соответственно).

При проведении расчетов использовалась неявная итерационная схема [12], представляющей собой вариант точечного метода Гаусса-Зейделя. Подробнее численный метод решения описан в [13].

В расчётах использовалась ранее разработанная физико-химическая модель неравновесного воздуха [14, 15], тестировавшаяся в частности, путем сравнения с лётными данными по электронной концентрации в ударном слое около аппарата RAM-C. Кратко, она состоит в следующем. Воздух предполагается состоящим из 8 химических компонентов: N₂, O₂, NO, N, O, N₂⁺, O₂⁺, NO⁺ и е⁻. Вращательная температура, колебательные температуры молекулярных ионов N₂⁺, O₂⁺, NO⁺ и температура свободных электронов полагаются равными поступательной температуре. В общем случае для нейтральных молекул N₂, O₂ и NO решаются уравнения сохранения колебательной энергии (колебательно неравновесная модель с различными колебательными температурами). Однако, предварительные расчеты показали, что в рассматриваемых условиях колебательные температуры молекул N₂, O₂ и NO слабо отличаются от поступательной температуры. Поэтому температура их колебательного возбуждения также полагалась равной поступательной температуре.

Применимость такого упрощенного подхода связана с тем, что СА «Союз» имеет большие размеры и реализуемые в рассматриваемых условиях (H < 70км) толщины пограничного слоя и зоны релаксации колебательных степеней свободы молекул кислорода и азота за фронтом ударной волны малы по сравнению с толщиной ударного слоя. Для излучения ударного слоя на больших высотах необходимо использовать более сложную газодинамическую модель течения, заключающуюся в решении уравнений вязкого ударного слоя, а на высотах H > 90 км уравнений Навье-Стокса.

К настоящему времени система химических реакций и реакций ионизации, протекающих в воздухе при скоростях полета V = 4 - 8 км/с и константы скоростей их протекания достаточно хорошо известны. В этих условиях достаточно учитывать реакции, приведенные в таблице 4. Скорости прямых реакций записываются в виде:

 $K_{f} = A T^{B} \exp(-C/T)$ см³/(моль c), a обратных: $K_{r} = D T^{E} \exp(-F/T)$ см⁶/(моль² c) (тройные), $K_{r} = D T^{E} \exp(-F/T)$ см³/(моль c) (бинарные),

Таблица 3

№,	Реакция	А	В	С	D	Е	F
1	$O_2 + M \Leftrightarrow 2 O + M$	3.6·10 ¹⁹	-1	59400	$3.12 \cdot 10^{16}$	-0.5	0
2	$N_2 + M \Leftrightarrow 2 N + M$	5.8·10 ¹⁷	-0.5	113200	$3.08 \cdot 10^{16}$	-0.5	0
3	NO+ M \Leftrightarrow N+O+M	$1.2 \cdot 10^{19}$	-1	75500	$2.9 \cdot 10^{18}$	-1	0
4	NO+ O \Leftrightarrow N + O ₂	2.8·10 ⁹	1.	20000.	$1.1 \cdot 10^{10}$	1.0	4000
5	$N_2 + O \Leftrightarrow NO + N$	$2.0 \cdot 10^{12}$	0.5	38000.	$4.4 \cdot 10^{11}$	0.5	0.

6	$N + O \Leftrightarrow NO^+ + e$	$2.56 \cdot 10^{12}$	0.	32200.	$6.7 \cdot 10^{21}$	-1.5	0.
	$N + N \Leftrightarrow N_2^+ + e$	$4.44 \cdot 10^{10}$	0.7	67500.	$1.5 \cdot 10^{22}$	-1.5	0.
7	$O + O \Leftrightarrow O_2^+ + e$	$1.20 \cdot 10^{10}$	0.65	80600.	$8.0 \cdot 10^{21}$	-1.5	0.

Проведенные ранее исследования вклада различных процессов в интенсивность неравновесного излучения воздуха за ударными волнами показали, что в УФ области спектра основными являются системы полос молекул N₂(2+), N₂⁺(1-), O₂(SR) и NO (β , γ , δ , ϵ). Поэтому в данной работе учитывались именно эти системы полос. В таблице 4 показаны электронные состояния молекул, которые принимают участие в процессах возбуждения и дезактивации.

Таблица 4

Молекула Состояние Энергия возбужд		Энергия возбужде-	Переход	Время жизни
-		ния, Е, см ⁻¹	-	τ, c
	$C^{3}\Pi_{u}$	89136	$C^3\Pi_u \rightarrow B^3\Pi_g$	3.7.10 -8
			(вторая положит)	
N_2	${ m B}^3\Pi_{ m g}$	59619	$B^3\Pi_g \to A^3\Sigma_u^{\ +}$	5·10 ⁻⁸
			(первая положит)	
	$A^{3}\Sigma_{u}^{+}$	50203		1.3·10 ⁻⁵
	$X^{1}\Sigma_{g}^{+}$	0		
	${ m B}^2{\Sigma_u}^+$	25461	2 4 2 4	
N_{*}^{+}	۸ ² П	0167	$B^2 \Sigma_u^{ -} \rightarrow X^2 \Sigma_g^{ -}$	$5.8 \cdot 10^{-8}$
112	A II _u	9107	(первая отриц)	5.8 10
	${ m X}^2{ m \Sigma_g}^+$	0		
	$D^2\Sigma^+$	53085	$D^{2}\Sigma^{+} \rightarrow X^{2}\Pi_{r}(\varepsilon)$	٥ ٥
	$C^2\Pi$	52073	$C^2\Pi \rightarrow X^2\Pi$ (8)	2.6.10-
NO		52075	$C \Pi_r \rightarrow X \Pi_r (0)$	5.10-8
	$B^2 \Pi_r$	45918	$B^{2}\Pi_{r} \to X^{2}\Pi_{r}(\beta)$	$2.1.10^{-6}$
	$A^2\Sigma^+$	43964	$A^{2}\Sigma^{+} \rightarrow X^{2}\Pi_{r}(\gamma)$	2.1110
	$\mathbf{v}^2 \mathbf{n}$	0		$2 \cdot 10^{-7}$
	$\Lambda \Pi_r$	0		
	$B^{3}\Sigma_{u}^{-}$	0010	$B^{3}\Sigma_{u}^{-} \rightarrow X^{3}\Sigma_{g}^{-}$	$4 \cdot 10^{-8}$
O_2	$X^{3}\Sigma^{-}$	89136	(Шумана-Рунге)	
	Λ Δg			

Процессы, приводящие к возбуждению электронных состояний молекул с последующим излучательным переходом весьма разнообразны. Это в первую очередь столкновения с электронами и тяжелыми частицами, образование электронно-возбужденных молекул в химических реакциях (хемилюминисцентные реакции) и передача энергии возбуждения между близкими состояниями различных молекул. Учтенные в настоящей работе процессы возбуж-

дения электронных состояний молекул приведены в таблице 5. Обозначения электронных состояний в этой таблице используются в сокращенном виде.

Таблица 5

N⁰	Реакция	N⁰	Реакция
1.	$N_2 + e - \Leftrightarrow N_2(A) + e -$	21.	$NO + NO \Leftrightarrow NO(A) + NO$
2.	$N_2 + N \Leftrightarrow N_2(A) + N$	22.	$NO + e - \Leftrightarrow NO(B) + e -$
3.	$N_2 + O_2 \Leftrightarrow N_2(A) + O_2$	23.	$NO(A) + e - \Leftrightarrow NO(B) + e -$
4.	$N_2 + O \Leftrightarrow N_2(A) + O$	24.	$NO + NO \Leftrightarrow NO(B) + NO$
5.	$N_2(A) + M \iff N + N + M$	25.	$NO + N_2 \Leftrightarrow NO(B) + N_2$
6.	$N_2(B) \rightarrow N_2(A)$	26.	$NO + O_2 \Leftrightarrow NO(B) + O_2$
7.	$N_2(C) \rightarrow N_2(B)$	27.	$NO + O_2 \Leftrightarrow NO(B) + O_2$
8.	$N_2(A) + N_2 \iff N_2(B) + N_2$	28.	$NO + M \Leftrightarrow NO(C) + M$
9.	$N_2(C) + N_2 \Leftrightarrow N_2(A) + N_2(B)$	29.	$NO + M \Leftrightarrow NO(D) + M$
10.	$N_2 + e - \Leftrightarrow N_2(B) + e -$	30.	$NO + e - \Leftrightarrow NO(C) + e -$
11.	$N_2(A) + e - \Leftrightarrow N_2(B) + e -$	31.	$NO + e - \Leftrightarrow NO(D) + e -$
12.	$N_2 + e - \Leftrightarrow N_2(C) + e -$	32.	$N_2^+(B) \rightarrow N_2^+$
13.	$NO(A) \rightarrow NO$	33.	$N_2^+ + e - \Leftrightarrow N_2^+(A) + e -$
14.	$NO(B) \rightarrow NO$	34.	$N_2^+ + e - \Leftrightarrow N_2^+(B) + e -$
15.	$NO(C) \rightarrow NO$	35.	$N_2^+(A) + e - \Leftrightarrow N_2^+(B) + e -$
16.	$NO(D) \rightarrow NO$	36.	$N_2 + N_2^+ \Leftrightarrow N_2^+ (B) + N_2$
17.	$NO + e - \Leftrightarrow NO(A) + e -$	37.	$O_2(SR) \rightarrow O_2$
18.	$NO + N_2(A) \Leftrightarrow NO(A) + N_2$	38.	$O_2 + e - \Leftrightarrow O_2(SR) + e -$
19.	$NO + O_2 \Leftrightarrow NO(A) + O_2$	39.	$O + O \rightarrow O_2(SR)$
20.	$NO + O \Leftrightarrow NO(A) + O$		

В таблице 6 приведены константы скоростей этих реакций, записанные так, как и в таблице 3. Для излучательных переходов в качестве констант скоростей указаны времена жизни верхнего возбужденного состояния.

Таблица 6

Nº	А	В	С	D	Е	F
1.	1.0·10 ¹⁵	0	71600	$1.5 \cdot 10^{14}$	0	
2.	$1.8 \cdot 10^{14}$	0	71600	$3.0 \cdot 10^{13}$	0	
3.	$4.0 \cdot 10^{13}$	-0.5	71600	$6.0 \cdot 10^{12}$	-0.5	
4.	5.0·10 ¹⁴	-0.5	71600	$7.5 \cdot 10^{13}$	-0.5	
5.	$6.0 \cdot 10^{18}$	-1.0	41000		-0.5	
6.				1.3e ⁻⁵		
7.				3.7e ⁻⁸		
8.	$6.9 \cdot 10^{11}$	0.5	13600	$3.0 \cdot 10^{16}$	0.5	
9.	$2.6 \cdot 10^{15}$	0	30000	$3.0 \cdot 10^{14}$	0	
10.	$1.8 \cdot 10^{13}$	0.5	85800	$8 \cdot 10^{12}$	0.5	
11.	$1.5 \cdot 10^{13}$	0.5	13600	$1.0 \cdot 10^{13}$	0.5	
12.	$2.1 \cdot 10^{14}$	0.5	128200	$2.7 \cdot 10^{13}$	0.5	
13.				$2 \cdot 10^{-7}$		
14.				$2.1 \cdot 10^{-6}$		
15.				5.10-8		
16.				2.6.10-8		
17.	$7.4 \cdot 10^{11}$	0.5	63500	$2.1 \cdot 10^{12}$	0.5	
18.	$4.0 \cdot 10^{13}$	0	0	8.0·10 ¹⁴	0	8000
19.	$1.7 \cdot 10^{13}$	0	63500	$5.0 \cdot 10^{13}$	0	
20.	$3.0 \cdot 10^{13}$	0	63500	$1.0 \cdot 10^{13}$	0	
21.	$3.0 \cdot 10^{12}$	0.5	63500	$9.0 \cdot 10^{12}$	0.5	
22.	$2.4 \cdot 10^{12}$	0.5	65700	$8.8 \cdot 10^{11}$	0.5	
23.	$4.4 \cdot 10^{12}$	0.5	0	8.8·10 ¹¹	0.5	
24.	$7.0 \cdot 10^{15}$	-0.5	65400	$2.5 \cdot 10^{15}$	-0.5	

25.	$1.0 \cdot 10^{12}$	0	65400	3.0·10 ¹¹	0	
26.	$2.7 \cdot 10^{13}$	-0.5	65400	$.3 \cdot 10^{13}$	-0.5	
27.	5.4·10 ¹¹	0.5	65400	$2.0 \cdot 10^{12}$	0.5	
28.	$7.56 \cdot 10^{12}$	0.5	75000	$7.56 \cdot 10^{12}$	0.5	
29.	$7.56 \cdot 10^{12}$	0.5	76400	$1.51 \cdot 10^{13}$	0.5	
30.	$7.2 \cdot 10^{13}$	0.5	75000	$7.2 \cdot 10^{13}$	0.5	
31.	$7.2 \cdot 10^{13}$	0.5	76400	$1.44 \cdot 10^{14}$	0.5	
32.				5.8·10 ⁻⁸		
33.	$1.3 \cdot 10^{14}$	0.5	13200	$6.5 \cdot 10^{13}$	0.5	
34.	$3.8 \cdot 10^{14}$	0.5	36630	$3.8 \cdot 10^{14}$	0.5	
35.	$2.6 \cdot 10^{14}$	0.5	23430	$5.2 \cdot 10^{14}$	0.5	
36.	$1.5 \cdot 10^{14}$		36630	$1.3 \cdot 10^{14}$	0	
37.				4·10 ⁻⁸		
38.	$2.0 \cdot 10^{14}$	0.5	71000	$2.0 \cdot 10^{14}$	0.5	
39.	$4.3 \cdot 10^{6}$	0	14500	0		

Заселённости электронных состояний молекул получены путём решения определяющего уравнения для каждого состояния с учётом конвекции. Проведены также расчеты заселенностей электронных состояний в предположении термодинамического равновесия с основным состоянием при местной поступательной температуре газа. При проведении расчетов излучения использовались данные по молекулярным константам и вероятностям колебательных и электронных переходов в соответствии с работами [1, 14]. Спектральное распределение молекулярных полос рассчитывалось с использованием приближенной модели едва перекрывающихся линий [1]. Расчет суммарного излучения от ударного слоя проводился в приближении тонкого оптического слоя, т.е. поглощение излучения не учитывалось. В рассматриваемых условиях для спектра молекулярных полос данное приближение справедливо.

Рис.8.

Расчёты выполнены для участка траектории входа СА «Союз-ТМА» в атмосферу Земли в диапазоне высот 80.5 – 42.6 км, когда процессы диссоциации, ионизации, возбуждения внутренних степеней свободы имеют переходной характер, от сильно неравновесного, к почти равновесному состоянию. На меньших высотах эти процессы протекают равновесным образом, на больших высотах – сильно замедленны (заморожены). Параметры траектории и характеристики атмосферы, для которых были выполнены расчеты, приведены в таблице 1.

На рис.8*а* представлены изолинии температуры с шагом $\Delta T = 500$ К в ударном слое на лобовой и части боковой сторон, а также у поверхности СА «Союз-ТМА» для верхнего участка траектории (H = 70.1 км). Температура в ударном слое на лобовой стороне резко уменьшается от ударной волны к поверхности аппарата в результате протекания процессов диссоциации и ионизации. Так на критической линии температура падает примерно от 21000 до 6200 К. Причем основное падение температуры происходит около самой ударной волны – более чем на 10000 К на расстоянии 0.1 толщины ударного слоя. Напротив, в продольном направлении градиенты температуры в ударном слое значительно меньше. Например, на самой поверхности – от 6200 до 5000 К. При развороте потока около угловой кромки температура уменьшается, особенно значительно на подветренной стороне (примерно в 5 раз – от 5000 до 1000 К). На лобовой стороне благодаря большому углу атаки T падает не так резко – приблизительно в 1.5 раза.

Рис.9.

Аналогичная картина изолиний температуры с шагом $\Delta T = 400$ К для нижнего участка траектории (H = 45.6 км) представлена на рис.8*b*. Уровень Т в ударном слое в этом случае заметно меньше в связи с уменьшением скорости аппарата с 7.5 до 4.5 км/сек. В отличие от высоты 70.1 км температура в основной части ударного слое на лобовой стороне практически постоянна по нормали к поверхности за исключением ближайшей окрестности ударной волны. Это означает, что процессы диссоциации, имевшие сильно неравновесный характер и приводившие к уменьшению температуры поперек ударного слоя на больших высотах, на меньших высотах находятся в равновесии. Падение температуры при развороте у кромки с лобовой стороны составляет около 1.5 раза, т.е. примерно столько же, что и на высоте 70.1 км. Уменьшение T при развороте с подветренной стороны составляет около 2 раз, что значительно меньше, чем на 70.1 км, где оно составляло примерно 5 раз. Это различие вероятно вызвано меньшей степенью диссоциации.

Изолинии давления $P/\rho_{\infty} U^2_{\infty}$ и массовой концентрации молекул N_2 для высоты 70.1 км представлены на рис.9. Видно, что на лобовой поверхности от критической точки к кромке давление падает примерно вдвое – с 0.95 до 0.4. Изменение давления поперек ударного слоя почти на всей лобовой поверхности составляет несколько процентов. Только возле кромки с подветренной стороны оно достигает 20 – 30%. При развороте потока у кромки давление падает до 0.1 и 0.01 на лобовой и подветренной стороне соответственно. В рассмотренном диапазоне условий распределение давления в ударном слое (в особенности на лобовой поверхности) почти не зависит от высоты.

Рис.10

На рис.10 приведены распределения массовых концентраций электронных уровней $N_2(C^3\Pi_u)$, 2-я положительная полоса, и $N_2^+(B^2\Sigma_u^+)$, 1-я отрицательная полоса, поперек ударного слоя на критической линии при H=70.1 км. Сплошные и пунктирные кривые – расчет в неравновесном и локально равновесном приближении. Видно, что в рассматриваемых условиях заселенности данных электронных уровней существенно ниже локально равновесных значений. Отличие составляет около 1 и 2 порядков для уровней $N_2^+(B^2\Sigma_u^+)$ и $N_2(C^3\Pi_u)$ соответственно.

Спектральная излучательная способность ε_{λ} , Вт/мкм·ср, от всего ударного слоя на лобовой поверхности СА «Союз-ТМА» на высоте 45.6 и 70.1 км в неравновесном и локально равновесном приближении представлена на рис.11 a, δ и 12 a, δ соответственно.

Рис.11. Спектральная излучательная способность ударного слоя, Н = 45.6 км.

Рис.12. Спектральная излучательная способность ударного слоя, Н = 70.1 км

На высоте 70.1 км в неравновесном случае основной вклад в излучение в рассматриваемом диапазоне дают полосы NO(γ), N₂(2+) и N₂⁺(1-). В окрестности 230-300 нм существенны также полосы NO(β) и O₂(SR). В локально равновесном приближении относительный вклад полос в целом сохраняется, за исключением полосы N₂⁺(1-), вклад которой незначителен. Однако абсолютные значения интенсивности примерно на два порядка выше.

гаотица /

H, km	S, km	η°	<i>I_{eq}</i> , Вт/ср	Inoneq, BT/cp	I _{exp} , BT/cp
70.1	405	129	$1.9 \cdot 10^4$	117	113
60.7	390	129	$2.1 \cdot 10^4$	143	115
52.6	390	103	$2.3 \cdot 10^4$	182	93
45.6	390	103	$1.3 \cdot 10^4$	81	68

Рис.13. Интенсивность УФ излучения плазменного образования вблизи СА «Союз-ТМА»

В таблице 7 и на рис.13 приведены данные расчетов интенсивности излучения, поправленных с учетом спектральной чувствительности УФ камеры, показанной на рис.5. Там же приведены данные летных измерений. Видно, что учет столкновительных и радиационных процессов, приводящих к заселению и обеднению электронно-возбужденных уровней молекул, играет определяющую роль в рассматриваемых условиях – различие в уровнях излучательной способности в равновесном и неравновесном приближениях составляет около двух порядков. Из анализа представленных данных следует, что между расчетами в неравновесном приближении и экспериментами наблюдается удовлетворительное соответствие, если учесть, что точность измерений составляет примерно 30%.

Выводы.

- Показана возможность радиометрических измерений в УФ диапазоне длин волн плазменных образований около аппаратов, входящих в атмосферу Земли, с борта Международной космической станции.
- Разработана методика проведения такого рода космических экспериментов и оборудование для ее реализации. На примере регистрации УФ-излучения около СА «Союз -ТМА» показано, что регистрация излучения может проводиться в широком диапазоне условий (высоты H =100 – 30 км, скорости V =7.6 – 4 км/с) и с расстояний до 500 км. Полученные данные использовались для верификации и усовершенствования термохимической и радиационной модели высокотемпературного воздуха.
- Показано, что учет процессов заселения и тушения возбужденных электронных состояний молекул весьма важен в рассматриваемых условиях – различие между теоретическими значениями силы излучения в равновесном и неравновесном приближениях достигают двух порядков величины.
- Из анализа представленных данных следует, что удовлетворительное согласие между теоретическими и экспериментальными значениями получено только в неравновесном приближении.
- Полученные результаты свидетельствуют о правильности предложенной модели высокотемпературного излучающего воздуха.

Литература

- 1. Каменщиков В.А., Пластинин Ю.А., Николаев В.М., Новицкий Л.А. Радиационные свойства газов при высоких температурах. М. : Машиностроение, 1971, с. 440.
- 2. Авилова Н.В., Биберман Л.М., Воробьев В.С., и др. Оптические свойства горячего воздуха. М.: Наука, 1970, с.320.
- 3. Тир Т., Георгиев С., Аллен Р. Неравновесное излучение от фронта ударной волны. В кн. :Исследование гиперзвуковых течений. Под ред. Риддела Ф.Р. М. : Мир, 1964.
- 4. Кекк, Кемм и др. В кн. Ударные трубы. М. : ИЛ, 1962.
- 5. Erdman P.W., Zipf E.C., Espy P., et al. Measurements of low-velocity bow shock ultraviolet radiation. J.Thermophysics and Heat Transfer, Vol.7, No 1, pp.37-41, 1993.
- 6. Erdman P.W., Zipf E.C., Espy P., et al. Measurements of ultraviolet radiation from a 5-km/s bow shock. J.Thermophysics and Heat Transfer, Vol.8, No 3, pp.441-446, 1994.
- 7. Levin D.A., Candler G.V., Collins R.J., et al. Examination of ultraviolet radiation theory for bow shock rocket experiment. AIAA Paper, No 92-2871, AIAA Thermophysics Conference, 1992.
- Gorelov V.A., Gladyshev M.K., Kireev A.Y., Yegorov I.V., Plastinin Yu.A., Karabadzhak G.F. Experimental and numerical study of nonequilibrium ultraviolet NO and N₂⁺ emission in shock layer. J.Thermophysics and Heat Transfer, Vol.12, No 1, pp.1-8, 1997.
- Vlasov V.I., Gorshkov A.B., Kovalev R.V., Plastinin Yu.A. Theoretical studies of air ionization and NO vibrational excitation in low density hypersonic flow around re-entry bodies. AIAA Paper, No 97-2582, 1997.
- Plastinin Yu. A., Vlasov V.I., Gorshkov A.B., Kovalev R.V., Kuznetsova L.A. Analysis of nonequilibrium radiation for low density hypersonic flows at low to moderate velocities. AIAA Paper, No 98-2466, 1998.
- Anfimov N.A., Karabadzhak G.F., Plastinin Yu.A. Investigations of Interaction Characteristics of Exhaust Products of Liquid-Propellant Engines with the Earth Upper Atmosphere Layers during the "Relaxation" Space Experiments Series onboard "Mir" Orbital Station. Cosmonautics and Rocket Engineering, No 21, 2004. (in Russian).
- Yoon S., Jameson A. An LU-SSOR scheme for the Euler and Navier-Stokes equations. AIAA Paper, No 87-0600, 11 p, 1987.
- 13. Gorshkov A.B. Calculation of base heat transfer behind thin cone-shaped bodies. Cosmonautics and Rocket Engineering. 1997, No 11, pp.13-20.
- 14. Kuznetsova L.A., Kuz'menko N.E., Kuzyakov Yu.A., Plastinin Yu.A. Probabilities of optical transitions of diatomic molecules, Moscow, Nauka, 1971 (in Russian).