К ЭНЕРГЕТИЧЕСКИМ СООТНОШЕНИЯМ В УДАРНЫХ И ДЕТОНАЦИОННЫХ ВОЛНАХ.

Топчиян М.Е.

Институт гидродинамики СО РАН им. М.А. Лаврентьева,

Новосибирский Государственный Университет.

Обозначения:

С_р – молярная теплоёмкость при постоянном давлении;

*С*_v – молярная теплоёмкость при постоянном объёме;

D – скорость детонации или ударной волны;

*E*_i – энергия возбуждения внутренних степеней свободы молекулы на моль вещества;

*E*_a – энергия активации химической реакции;

H=*U*+*pV* – термодинамическая часть энтальпии на моль идеального газа;

 ΔH_x^0 – изменение потенциальной энергии химической связи в ходе реакции на моль вещества («тепловой эффект» при температуре абсолютного нуля);

 $j = \rho_0 D$ – плотность потока массы через скачок;

К – средняя кинетическая энергия движения молекул газа;

k – постоянная Больцмана и показатель политропы;

m – масса молекулы, атома;

М-число Маха;

n – число молекул в единице объёма;

*N*₀-число Авогадро;

p – давление газа;

Q – общее количество тепла, подведенное к единице массы газа в ходе химической реакции.

 $q_s = -(E_{vs} + E_{es})/\mu_0 R T_0$ – безразмерная энергия, поглощенная колебательными и электронными степенями свободы в процессе ударного перехода.

 $q_x = \Delta H_x^0 / \mu_0 R T_0$ – безразмерное количество тепла, подведенное к единице массы газа за счет изменения потенциальной энергии химической связи;

R – газовая постоянная (1,987 кал/моль/К)

Т-абсолютная температура;

 $U = \int_{0}^{T} C_{V} dT$ – термодинамическая часть внутренней энергии на моль идеального газа;

v – скорость газа за ударной волной относительно ее фронта;

 $V = 1/\rho$ – удельный объем;

- $\gamma = C_p/C_v$ отношение удельных теплоёмкостей;
- *μ* молекулярная масса;
- *v* эффективное число степеней свободы молекулы;

 $\pi = p/p_0$ – безразмерное (относительное) давление;

 $\sigma = 1/\eta = \rho / \rho_0 -$ степень сжатия;

Индексы:

0 -начальное состояние;

- е-равновесное состояние, электроны;
- s -состояние за ударной волной
- *г*-вращательные степени свободы;
- tr -поступательные степени свободы;
- v -колебательные степени свободы;
- СЈ-состояние Чепмена-Жуге;.
- у упорядоченное движение

Сокращения:

- УВ ударная волна;
- ДВ детонационная волна;
- ПМ прямая Михельсона.

Введение.

Известно, что детонационные волны (ДВ) в газе неустойчивы. Это приводит к возникновению поперечных волн, являющихся неизменными спутниками детонации в режиме Чепмена-Жуге (см., например,[1]). Качественно очевидно, что с увеличением скорости волны (с пересжатием) будет расти температура за ударной волной и во всей зоне реакции, это будет приводить к усилению диссоциации продуктов детонации в точке химического равновесия, а вместе с ним уменьшению потенциальной энергии химической связи ΔH_x^0 , выделяющейся в ходе реакции. Численные расчеты пересжатых детонационных волн, проведенные в работах [2,3], не только подтвердили, что с увеличением скорости волны, вклад потенциальной энергии химической связи быстро уменьшается, но и показали, что для широкого круга газовых смесей ΔH_x^0 становится равным нулю при $D/D_{CJ} \le 1,95$. С пересжатием ДВ вырождается в УВ, которая при обычном ходе адиабат должна быть устойчива [4]. Экспериментальное подтверждение расчетов [2,3] было получено в работах, в которых изучались переходные явления. Например, в [5] исследовался выход детонации на стационарный режим из сильного пересжатия при инициировании искровым разрядом достаточно большой мощности. С ослаблением волны, по мере ее распространения, при $D \approx 1,5 \div 1,6D_{CJ}$ на следовых отпечатках появлялась характерная ячеистая структура.

Систематическое экспериментальное исследование влияния пересжатия на структуру ДВ (правда, для очень ограниченного числа смесей) было предпринято в [6]. На следовых отпечатках и шлирен-фотографиях для смесей $2H_2+O_2$ и $2H_2+O_2+7Ar$ переход от гладкой ДВ к ячеистой структуре фиксировался (в пределах ошибки эксперимента) при скорости пересжатой волны, соответствовавшей в расчете $\Delta H_x^0=0$.

В смеси метана с кислородом, так же разведенной семью молями аргона $(D_{CJ}=1640 \text{ м/c})$, расчетная скорость, при которой ΔH_x^0 становится равным нулю, составляла $\approx 2360 \text{ м/c}$. Тем не менее, в экспериментах ячеистую структуру все еще можно было наблюдать при скорости волны примерно до 2900 м/с. Это означает, что для этой смеси, такое пересжатие все еще не обеспечивало переход к устойчивому режиму. Неустойчивость сохранялась при $\Delta H_x^0 < 0$, когда энергия потока, вследствие химического превращения, поглощается!

Мы попытаемся рассмотреть эти факты более подробно и дать объяснение этим и некоторым смежным явлениям.

Устойчивость детонационных и ударных волн. Теоретические результаты и эксперимент.

Для ДВ Чепмена-Жуге устойчивость, как правило, связывают, в основном, с величиной энергии активации химической реакции E_a . Проблема рассматривалась в работах К.И.Щелкина, Р.М.Зайделя, В.В.Пухначева [7-11] в рамках модели необратимой химической реакции в совершенном газе, в ходе которой темп выделения химической энергии подчиняется закону Аррениуса с экспоненциальной зависимостью скорости реакции от обратной температуры. Основной результат этих работ состоял в том, что при энергиях активации больше некоторой величины, самоподдерживающаяся ДВ неустойчива к малым возмущениям не слишком высокой частоты. Величина тепловыделения в этих работах не варьировалась, т.е. влияние на устойчивость величины химической энергии, выделяющейся в ходе реакции, и пересжатия не исследовалось

Такое исследование было предпринято Дж.Дж.Эрпенбеком [12,13] для той же модели совершенного газа с необратимой кинетикой Аррениуса. Результаты показали, что в этой модели положение границы области устойчивости на плоскости «пересжатие – волновое число поперечного возмущения» зависит как от энергии активации, так и от величины тепловыделения химической реакции. Было установлено, что если безразмерное тепловыделение меньше некоторой величины ($q_x \le 0,3\div 0,4$), детонационная волна устойчива даже при E_a на уровне 30 ккал/моль. Отметим, что такие величины q_x соответствуют величине тепловыделения $\Delta H_x^0 \sim 2$ ккал/моль, слишком малой для стационарной ДВ. В обычных условиях эксперимента самоподдерживающийся режим в смесях с таким q_x реализуется трудно: реально величина ΔH_x^0 для топливно-воздушных стехиометрических смесей несколько больше 14 и достигает 30 ккал/моль для стехиометрических смесей метана или ацетилена с кислородом.

В расчетах [12,13] уменьшение энергии активации оказывало стабилизирующее влияние, особенно вблизи скорости Чепмена-Жуге. Но даже для $E_a=0$ пересжатая детонация при приближении к режиму Чепмена-Жуге оставалась неустойчивой при $q_x \approx >10$.

Таким образом, хотя чувствительность химической реакции к изменению температуры среды, характеристикой которой является энергия активации, вероятно, важна в явлении неустойчивости детонации, экзотермичность реакции, соответствующая самоподдерживающимся детонационным волнам, заведомо достаточна, чтобы вызвать неустойчивость даже при нулевой энергии активации. Таким образом, важнейшими параметрами, определяющими устойчивость плоской ДВ, являются величина энерговыделения, и степень пересжатия. Вклад энергии активации оказывается существенным, но не определяющим. Вопрос о том, какое физическое явление или критерий стоит за ограничением области устойчивости (или неустойчивости) при нулевой энергии активации остается в этой модели открытым. Заметим только, что и при нулевой энергии активации сохраняется положительная обратная связь — локальное повышение давления приводит к увеличению скорости выделения тепла, поскольку скорость реакции в этой модели пропорциональна давлению. С ростом E_a эта обратная связь усиливается, что и приводит к наблюдаемому сужению области устойчивости.

Другой результат этой работы — сохранение неустойчивости при очень высоких степенях пересжатия, – связан с несовершенством модели, которая не учитывает упомянутое выше уменьшение ΔH_x^0 с ростом пересжатия.

При реальных процессах в зоне индукции непосредственно за УВ, где господствуют бинарные реакции обмена и ветвления цепей, потенциальная энергия химической связи практически не освобождается. Из-за затрат энергии на образование радикалов и разрушению (диссоциации) небольшой части молекул исходного вещества имеет место даже некоторая эндотермичность. Высвобождение энергии химической связи происходит, в основном, в ходе тройных соударений, за счет реакций рекомбинации, эффективная энергия активации которых близка к нулю или даже отрицательна. Поэтому следует признать, что в цитированных работах по устойчивости влияние термодинамических параметров среды на скорость выделения тепла, а, следовательно, на профили параметров в ДВ, описывается слишком грубо и не соответствует физике явлений. Такой подход может претендовать на описание времени задержки воспламенения, но не на воспроизведение тепловыделения и профиля стационарной волны, на фоне которого в теоретических работах и рассматривается поведение малых возмущений.

Устойчивость ударных волн теоретически исследовалась в работе С.П.Дьякова [4]. В этой работе, цитируемой практически во всех последующих исследованиях, относящихся к данному вопросу, показана устойчивость УВ распространяющихся в средах с обычными свойствами. Теория предсказывала неустойчивость УВ к малым возмущениям для ударных адиабат, у которых имеется точка перегиба и в некоторых специальных случаях. В конце работы указывается, что адиабаты, отвечающие критерию неустойчивости, «должны наблюдаться в двух и многоатомных газах, диссоциирующих при повышении температуры». Явной физической трактовки поведения таких адиабат в этой работе нет.

Экспериментальное обнаружение в некоторых особых условиях неустойчивости ударных волн [14-16], поставило вопрос об источнике энергии, поддерживающей неустойчивость на общем эндотермическом фоне процессов за ударной волной. Хотя в последующих работах [17-18] указывалось, что возможной причиной неустойчивости являются релаксационные процессы, достаточно убедительных физических доводов или каких-то ясных численных оценок в пользу этих явлений не приведено.

Сразу отметим одну общую для ДВ и УВ особенность. В экспериментах неустойчивость ДВ при нулевом, или даже отрицательном балансе энергии химической связи ΔH_x^0 наблюдается в тех случаях, когда система содержит молекулы, обладающие достаточно большим числом колебательных степеней свободы (CH₄, C₂H₂, фреон-12). В УВ параметры должны быть таковы, что сильно возбуждаются колебательные или электронные степени свободы, или возникает ионизация (CO₂, Ar), а плотность среды относительно невелика.

Неустойчивость течения в любом случае не может возникать «на пустом месте» без подвода (тем или иным способом) энергии к потоку. Если профиль параметров волны ступенчатый, говорить о неустойчивости течения за УВ, по-видимому, бессмысленно. В среде, которая после ударного перехода неспособна к каким-либо превращениям с выделением энергии или перераспределением ее между внутренними и поступательными степенями свободы, вообще ничего не должно происходить. В системе отсчета, связанной с газом за УВ с таким профилем, газ представляет собой термодинамически равновесную, покоящуюся среду с однородно распределенными параметрами, в которой самопроизвольно никакие возмущения возникать и усиливаться не могут.

Развитие неустойчивости может иметь место лишь на фоне общего снижения давления и плотности за ударной волной. Это снижение может происходить как со спадом температуры в примыкающей волне разрежения, так и с повышением температуры вызванным подводом энергии к потоку за счет тех или иных источников, в частности, в детонационной волне это происходит в ходе экзотермических химических реакций.

Заметим, что во всех работах, посвященных численному моделированию возникновения ячеистых структур ДВ, начальное возмущение либо задается искусственно, в виде локального изменения плотности или температуры, либо возникает под действием ошибок округления ЭВМ. И в том и в другом случае, в конечном счете, возникают структуры с поперечными волнами со всеми характерными чертами, обнаруженными в экспериментах, но в силу буквально «не естественных» начальных условий история развития ячеистых структур и выхода ДВ на квазистационарный режим этими расчетами правильно не описывается.

На наш взгляд, чтобы получить результаты, приближающиеся к естественным процессам установления, необходимо ввести в однородное начальное состояние среды (в соответствии с законами статистики) случайно распределенные флуктуации плотности и производить расчеты на этом поле начальных условий. Результат может быть признан достоверным, если при разных реализациях начального распределения неоднородностей, процесс в целом будет развиваться одинаково, и размер и структура ячейки в квазистационарном режиме будут идентичными.

Газодинамическое давление, степени свободы молекул и составляющие термодинамической части внутренней энергии.

Известно, что давление идеального газа на стенки сосуда возникает вследствие ударов молекул и связано с передачей импульса *поступательными* степенями свободы, связанными только с движением центра масс молекул ($p=nkT=p_{tr}$). С этой величиной мы имеем дело при реальных газодинамических процессах и физических измерениях. Именно эта величина входит в закон сохранения импульса в любых его формах. Вращательные, колебательные степени свободы, также как и возбуждение электронов, входящих в состав атомов и молекул, непосредственного вклада в давление (в рамках модели идеального газа) не дают и являются только своеобразным энергетическим резервуаром.

Однако при теоретическом описании и решении (не только аналитическом, но и численном) различных газодинамических задач, связанных с ударными и детонационными волнами, в том числе при расчетах устойчивости, часто используют модель совершенного газа ($\gamma = C_p/C_v = \text{const}$ во всем диапазоне температур), а термодинамическую часть внутренней энергии описывают соотношением:

$$U=pV/(\gamma-1), \tag{1}$$

или вводят некоторое эффективное γ , физический смысл, которого далеко не всегда прозрачен.

Реально (без учёта возбуждения электронов) отношение теплоемкостей γ для идеального газа связано с числом эффективных степеней свободы молекул соотношением: $\gamma = \frac{5 + v_r + 2v_v}{3 + v_r + 2v_v}$. В рассматриваемом диапазоне температур v_r совпадает с числом вращательных степеней свободы, колебательные – «разморожены» не полностью, и $v_v = l_v/(e^{\theta T} - 1)$ меньше числа колебательных степеней свободы l_v ($\theta = \hbar \omega/k$ – характеристическая колебательная температура). За ударными и детонационными волнами $\theta/T \sim 1$, и чем больше температура, тем больше v_v и меньше γ .

В реальном газе или при отсутствии равновесия по степеням свободы давление не совпадает с *p*_{tr}. В этом легко убедиться, представив внутреннюю энергию идеального газа в виде суммы энергий поступательных и внутренних степеней свободы:

$$U=3/2 \cdot N_0 nkT \cdot +E_r + E_v + E_e = 3/2 \cdot p_{tr} V + v_r RT/2 + E_v + E_e = (3/2 + v_r/2) \cdot pV + E_v + E_e.$$
(1a)

Первый член справа в этой формуле – энергия поступательных степеней свободы, которые единственно и создают газодинамическое давление. Вид этого члена не меняется при любых процессах, происходящих в идеальном газе. Остальные составляющие зависят не только от температуры, но меняются вследствие химических процессов, при которых изменяется число внутренних степеней свободы.

Мы видим, что давление в (1) не совпадает с тем, что должно входить в уравнение импульса. Таким образом, при расчете границ устойчивости и релаксации в УВ и ДВ традиционное представление внутренней энергии в виде (1) вообще следует признать неудовлетворительным, в частности потому, что такое описание маскирует различные конкретные процессы, отвечающие за подвод энергии к потоку. Мы лишаемся возможности правильно учитывать релаксационные явления, как на ударном переходе, так и в последующей волне разрежения или зоне горения.

С другой стороны, если исключить область глубоких криогенных температур, поступательные и вращательные степени свободы молекул любых газов полностью «разморожены». Энергии переходов у них малы по сравнению с *kT*. Равновесие между ними устанавливается за времена, соответствующие толщине ударного перехода [19], гораздо меньшие временно́го масштаба обычных газодинамических процессов,

поэтому энергия, вращательных степеней свободы (при не слишком малых плотностях газа) соответствует поступательной температуре. Это и дает возможность в правой части (1а) объединить члены этих составляющих внутренней энергии.

Энергия колебательных и электронных квантовых переходов относится к энергии поступательных и вращательных степеней свободы по порядку величины, как $m/m_e:\sqrt{m/m_e}:1$. Для любых молекул $m/m_e>3600$, поэтому установление равновесия по колебательным и электронным степеням свободы требует гораздо бо́льшего числа соударений, чем по вращательным. Следовательно, время релаксации электронных и колебательных степеней свободы гораздо больше. Это дает основание в первом приближении при описании газодинамических течений пренебречь взаимодействием между ними и представлять термодинамическую часть внутренней энергии виде, приведенном в формуле (1a) справа.

Заметим, что у газов, входящих в состав детонирующих смесей, при комнатных температурах колебательные и электронные степени свободы практически полностью «заморожены», поэтому E_{v0} и E_{e0} можно пренебречь по сравнению с RT_0 .

Поведение молекулярной массы и теплоемкости газов, содержащихся в продуктах взрыва. Результаты расчета ударных и детонационных адиабат.

В таблице приведены результаты расчета ряда параметров режима Чепмена-Жуге, пересжатых детонационных («_е») и соответствующих ударных волн («_s»), для некоторых смесей, полученные в [2,3] с использованием [20]. Для пересжатых волн индексы «₃» и «₄» соответствуют расчетным точкам, соседним с точкой $q_x=0$: «₃» тепловой эффект еще положительный, «₄» — уже отрицательный. Для равновесных состояний приводятся значения γ_j , соответствующие «замороженному» химическому составу. Начальная температура – 298,15 К, скорости –[м/с], молекулярные массы – [г/моль], ΔH_x^0 в точке Жуге – [кал/моль].

Из таблицы видно, что смеси разделяются по признаку изменения молекулярной массы на два типа. В смесях типа «А» на основе H₂, CO, содержащих в своем начальном составе простые молекулы с одной колебательной степенью свободы (O₂, CO, N₂, H₂), и сильно разведенной аргоном смеси C₂H₂+24O₂ переход к состоянию *CJ* происходит с увеличением молекулярной массы ($\mu_0 < \mu_{CJ}$), реакция ведет к усложнению молекулярной массы ($\mu_0 < \mu_{CJ}$), реакция ведет к усложнению молекулярной массы ($\mu_0 < \mu_{CJ}$).

В этих смесях при сильных пересжатиях между точками «3» и «4», молекулярная масса становится меньше начальной. Где-то между этими же двумя точками для этих смесей γ_s становится меньше γ_f . Что означает, что, вследствие усиления диссоциации, молекулы стали «проще», чем в начальном состоянии.

В смесях типа «В», содержащих в своем исходном составе молекулы углеводородов (CH₄, C₂H₂ и т.п.) с большим числом колебательных степеней свободы и трехатомные молекулы (N₂O), химическая реакция приводит к уменьшению молекулярной массы ($\mu_0 > \mu_{CJ}$). Для этих смесей «в среднем» структура молекул по сравнению с исходным состоянием упрощается, и число внутренних степеней свободы в ходе химической реакции уменьшается. Об этом же говорит увеличение отношения теплоемкостей ($\gamma_{TCJ} > \gamma_s$) по сравнению со значением за ударной волной. В пределах диапазона скоростей, использовавшихся в расчете, для этих смесей всегда $\gamma_f > \gamma_s$.

Две «экзотические» (N₂O+CO и C₂H₂+24O₂) смеси как будто бы являются исключением из правил: первая не содержит углеводородов, а $\mu_{CJ} < \mu_0$, и, наоборот, во второй смеси содержится углеводород, а $\mu_{CJ} > \mu_0$. Эти исключения лишь подтверждают правило, поскольку в первой из них в исходном составе присутствует относительно сложная трехатомная молекула N₂O с легко возбуждаемыми колебательными степенями свободы, а во второй — большая концентрация кислорода снижает влияние свойств ацетилена, сильное обеднение смеси приводит к снижению температуры горения и, следовательно, подавляет диссоциацию. К сожалению, для этих смесей в литературе экспериментальных данных об устойчивости пересжатой детонации нет.

Для всех смесей в пересжатых режимах с ростом интенсивности волны значения γ_s монотонно уменьшаются, т.к. при неизменном составе происходит дальнейшее «размораживание» колебательных степеней свободы, а в точках химического равновесия, в полном соответствии с усилением диссоциации, γ_f увеличиваются с ростом интенсивности волны.

На рис.1 графически представлены зависимости молярной теплоемкости некоторых газов от температуры, построенные по данным [20]. В абсолютном большинстве газообразных смесей при начальных температурах близких к комнатным колебательные и электронные степени свободы не возбуждены. Поэтому все графики при комнатной температуре имеют тенденцию группироваться возле C_p =7÷8 кал/(моль·К) ≈3,5÷4 *R* или v_{tr}^0 + v_r^0 =3+(2÷3) (для двухатомных линейных молекул и молекул, имеющих трехмерную структуру).

Вклад колебательных степеней свободы в теплоемкость становится существенным уже при температуре 500 К, а при $T\sim3000$ К кривые выполаживаются, т.е. происходит почти полное «размораживание». Теплоемкость для таких молекул, как CH₄ и C₂H₂, достигает 10÷12 *R*. Вклад колебательных степеней свободы над быстро релаксирующими поступательными и вращательными при этой температуре составляет от 6,5 до 8,5 *R*, т.е. 20÷25 ккал/моль. Это означает, что в этих условиях величина «теплового эффекта» в зоне релаксации УВ, в принципе, может быть порядка реализуемого в обычных детонационных волнах (см. последнюю строку таблицы).

Стехиометрические смеси этих газов с кислородом в состоянии за УВ, движущимися со скоростью детонации (Т~2000 К), имеют C_p 7,2 R и 6 R, соответственно. Для самых сложных молекул, входящих в продукты реакции (CO₂, H₂O), C_p не превышает 7,5 R. Поскольку суммарная мольная доля трехатомных молекул в точке Жуге составляет около 50%, теплоемкость продуктов реакции при температуре за УВ, заведомо не превышает 5 R. Разница в теплоёмкостях с состоянием за ударной волной составляет от 2,5 R до R. Грубая оценка показывает, что смеси типа «В» за УВ имеют по сравнению с продуктами реакции избыточный запас термодинамической части энтальпии, связанный с колебательными степенями свободы, порядка 7500÷3000 кал/моль. Что тоже составляет заметную долю от энерговыделения в точке Жуге. Из этого следует, что в детонационных волнах, когда $\mu_0 > \mu_e$, часть энергии, «закаченной» на ударном переходе во внутренние степени свободы, в процессе химического превращения высвобождается, и может обеспечивать существенный положительный энергетический баланс, даже если вклад энергии химической связи становится умеренно отрицательным.

Общее уравнение Гюгонио для среды при наличии химических реакций и релаксации колебательных и электронных степеней свободы.

На ударном переходе в системе координат, связанной со скачком, при условии, что химические процессы ещё не начались, уравнение закона сохранения энергии напишем в виде: Физико-химическая кинетика в газовой динамике

$$\frac{D^2 - v_s^2}{2} = \left(\frac{5}{2} + \frac{v_{r0}}{2}\right) \left(p_s V_s - p_0 V_0\right) + \left(\frac{v_{vs} RT_s}{\mu_0} + \frac{E_{es}}{\mu_0}\right) \quad .$$
(2)

В такой форме это уравнение ясно показывают, что на ударной волне кинетическая энергия потока расходуется на увеличение части энтальпии газа, связанной с поступательными и вращательными степенями свободы и накачку колебательных и электронных, если они возбуждаются.

За ударной волной течение может происходить с тепловыделением, изменением числа степеней свободы и состава молекул, и уравнение закона сохранения энергии имеет вид:

$$\frac{v^2 - v_s^2}{2} = \left(\frac{5}{2} + \frac{v_{r_0}}{2}\right) p_s V_s - \left(\frac{5}{2} + \frac{v_r}{2}\right) p V + \left[\frac{\Delta H_x^0}{\mu_0} + \left(\frac{v_{vs} RT_s}{\mu_0} - \frac{v_v RT}{\mu}\right) + \left(\frac{E_{es}}{\mu_0} - \frac{E_e}{\mu}\right)\right].$$
 (3)

Вычитая (3) из (2), получим связь между начальным и текущим состояниями:

$$\frac{D^2 - v^2}{2} + \left(\frac{\Delta H_x^0}{\mu_0} - \frac{v_v RT}{\mu} - \frac{E_e}{\mu}\right) = \left(\frac{5}{2} + \frac{v_r}{2}\right) pV - \left(\frac{5}{2} + \frac{v_{r0}}{2}\right) p_0 V_0.$$
(3a)

Разгон потока за ударной волной ($v > v_s$) может происходить (формула 3) за счет изменения внутренней энергии поступательных и вращательных степеней свободы (члены с множителем «pV»), энергии химической связи, изменения молекулярной массы и энергии возбужденных колебательных и электронных степеней свободы. Процессы, соответствующие членам с множителем «pV», имеют времена релаксации на порядки меньшие, чем остальные. Вследствие этого в определенных условиях может создаваться неравновесность, которая будет служить, подобно химическим процессам, источником энергии, высвобождающейся за ударной волной, т.е. E_e и E_v могут и при адиабатических процессах, производить экзотермический эффект. В отличие от химической реакции, такие процессы идут только при спадающей температуре и, следовательно, не могут быть стационарными (см. ниже).

Если поток за ударной волной стационарный, в отсутствии отвода или подвода массы и импульса состояние среды на *PV*-плоскости меняется вдоль прямой Михельсона (ПМ), которая записывается в виде:

$$p=p_{\rm s}-j^2(V-V_{\rm s}),\tag{4a}$$

если известно состояние позади ударной волны.

Проанализируем поведение среды в приближении, что энтальпию поступательных и вращательных степеней свободы идеального (но не совершенного) газа можно описать формулой: $H_{tr,r}=\varphi RT$, где φ связано с эффективным числом возбужденных степеней свободы соотношением: $\varphi=5/2+v_r/2$. На ударной волне число вращательных степеней свободы не изменяется, поэтому на ударном переходе φ сохраняется и $\varphi_s=\varphi_0=5/2+v_r0/2$. Колебательные почти полностью «размораживаются» при $M_0>4\div5$. Полное число степеней свободы растет и убывает вместе с молекулярной массой (μ растет с усложнением молекул), поэтому $\varphi>\varphi_0$ когда $\mu>\mu_0$ и $\varphi<\varphi_0$, когда $\mu<\mu_0$.

Подстановка φ в (2), исключение скоростей и переход к безразмерным переменным позволяет получить уравнение адиабаты Гюгонио для УВ в формах, удобных для исследования влияния различных процессов на поведение среды на ударном переходе и после него:

$$\pi_{s} = \frac{\left[(2\varphi_{0}-1)+2q_{s}\right]\sigma_{s}-1}{(2\varphi_{0}-1)-\sigma_{s}} \quad \text{M} \quad \sigma_{s} = \frac{(2\varphi_{0}-1)\pi_{s}+1}{(2\varphi_{0}-1)+\pi_{s}+2q_{s}}, \tag{5}$$

где q_s =--(E_{vs} + E_{es})/ $\mu_0 RT_0$,---- энергия, **поглощенная** колебательными и электронными степенями свободы в процессе ударного перехода.

Для двухатомных молекул с невозбужденными колебательными и электронными степенями свободы $\varphi=3,5$ ($v_{r0}=2$, $v_{v0}=v_v=E_e=0$), подстановка в (5) с учетом того, что в идеальном газе $T_s/T_0=\pi_s/\sigma_s$ приводит к $\sigma_s=\frac{6\pi_s+1}{6+\pi_s}$, что соответствует $\gamma=1,4$.

Давление определяется через число Маха распространения УВ по начальному состоянию:

$$\pi_{s} = \frac{(\varphi_{0} - 1)}{(2\varphi_{0} - 1)} \left[(\gamma_{0}M_{0}^{2} + 1) + \gamma_{0}\sqrt{(M_{0}^{2} - 1)^{2} - 2M_{0}^{2}\frac{(2\varphi_{0} - 1)}{(\varphi_{0} - 1)^{2}} \cdot \frac{q_{s}}{\gamma_{0}}} \right],$$
(6)

В общем случае детонационной адиабаты связь давления с числом Маха волны и тепловыделением дается формулой, которую можно получить, используя (2,3 и 4):

$$\pi_{1,2} = \frac{(\varphi - 1)}{(2\varphi - 1)} \left[(\gamma_0 M_0^2 + 1) \pm \gamma_0 \sqrt{(M_0^2 - 1)^2 + (2\varphi_0 M_0^2 + 1) \left[1 - \frac{\varphi^2 (\varphi_0 - 1)^2}{\varphi_0^2 (\varphi - 1)^2} \right] - 2M_0^2 \frac{(2\varphi - 1)}{(\varphi - 1)^2} \cdot \frac{q}{\gamma_0}} \right], \quad (7)$$

rge $q = (\Delta H_x^0 - E_v - E_e) / \mu_0 R T_0.$

Знак «+» в формулах соответствует верхней точке пересечения прямой Михельсона с адиабатой Гюгонио, знак «–» — нижней.

Скорость детонации Чепмена Жуге, как обычно, определяется из обращения в нуль подкоренного выражения в (7):

$$D_{CJ}^{2} = \frac{(2\varphi - 1)(\varphi_{0} + q) - \varphi^{2} + \sqrt{[(2\varphi - 1)(\varphi_{0} + q) - \varphi^{2}]^{2} - \varphi^{2}(\varphi - 1)^{2}}}{\gamma_{0}(\varphi - 1)^{2}}c_{0}^{2},$$
(8)

Максимальное количество тепла, которое при данном *M*₀ может выделиться при изменении состояния вдоль ПМ определяется в этой модели формулой:

$$q_{\max} = \frac{\Delta H_x^0 - E_v - E_e}{\mu_0 R T_0} = \gamma_0 \frac{\varphi_0^2 (\varphi - 1)^2 (M_0^2 - 1)^2 + (2M_0^2 - 1)[\varphi_0^2 (\varphi - 1)^2 - \varphi^2 (\varphi_0 - 1)^2]}{2\varphi_0^2 (2\varphi - 1)M_0^2} \quad .(9)$$

По сравнению с совершенным газом ($\phi_0 = \phi$) допустимое при данном $M_0 \square 1$ тепловыделение увеличивается примерно на величину

$$\Delta q_{\max} = \gamma_0 \frac{(2M_0^2 - 1)[\varphi_0^2(\varphi - 1)^2 - \varphi^2(\varphi_0 - 1)^2]}{2\varphi_0^2(2\varphi - 1)M_0^2} \approx \gamma_0 \frac{\varphi_0^2(\varphi - 1)^2 - \varphi^2(\varphi_0 - 1)^2}{\varphi_0^2(2\varphi - 1)}.$$
 (10)

Формулы (7-9) при *ү*=const переходят в соответствующие традиционные формулы для совершенного газа:

$$\pi_{1,2} = \frac{\gamma M_0^2 + 1 \pm \gamma \sqrt{(M_0^2 - 1)^2 - 2M_0^2(\gamma^2 - 1)q/\gamma}}{(\gamma + 1)},$$
(7a)

$$D_{CJ}^{2} = \{(\gamma^{2} - 1)q_{\max} / \gamma + 1 + \sqrt{[1 + (\gamma^{2} - 1)q_{\max} / \gamma]^{2} - 1}\}c_{0}^{2}.$$
(8a)

$$q_{\max} = \frac{\gamma(M_0^2 - 1)}{2(\gamma^2 - 1)M_0^2} = \gamma \frac{(\varphi - 1)^2 (M_0^2 - 1)^2}{2(2\varphi - 1)M_0^2},$$
(9a)

Если в φ включить и возбужденные колебательные степени свободы (электронные при детонационных температурах еще практически не возбуждаются), можно с помощью величин γ_0 и γ_s из приведенной таблицы получить оценки. При $\gamma_0 \approx 1,4$ и $\gamma_s \approx 1,2$ соответствующие значения $\varphi_0 \approx 3,5$ и $\varphi_s \approx 6$. Подстановка в (10) дает $\Delta q_{\text{max}} \approx 0,844,$ — по Эрпенбеку [12,13] величина вполне достаточная, чтобы при энергиях активации обычных для детонирующих смесей ДВ была неустойчива.

Пусть ударная волна переводит газ из начального состояния (p_0V_0) в состояние (p_sV_s) (рис.2,3). В отсутствии диссоциации $\Delta H_x^0=0$, $\mu=\mu_0$, и непосредственно после завершения ударного перехода и установления равновесия по степеням свободы

Физико-химическая кинетика в газовой динамике

$$q_s = -\frac{v_{vs}T_s}{T_0} - \frac{E_{es}}{RT_0}, \quad (v_{v0} = E_{v0} = 0).$$
(10a)

На ударной волне при неизменном составе всегда $T_s > T_0$, поэтому эффективное число возбужденных колебательных степеней свободы с ростом температуры может только расти ($v_{vs} > v_{v0}$). Следовательно, $q_s < 0$ и ударный переход всегда «эндотермичен», в том смысле, что часть кинетической энергии набегающего на скачок газа уходит на возбуждение внутренних степеней свободы, не связанных с давлением.

Для последующего течения состояние за ударной волной (*s*) является исходным, φ , v_r , v_v , μ , E_e , ΔH^0_x будут как-то изменяться.

Рассмотрим некоторые примеры.

1. Течение за ударной волной при $q=\Delta E_e=0$ и $\varphi=\varphi_0$ отвечает изэнтропическому движению газа. Состояние в примыкающей волне разрежения меняется в соответствии с показателем изэнтропы, проведенной из точки p_s, V_s . Для идеальных газов наиболее крутая изэнтропа, проходящая через эту точку (рис.3), соответствует благородным газам ($\gamma=5/3$). Она делит pV-плоскость на две области. Часть, расположенная ниже этой кривой, вообще недостижима при расширении ударно-сжатого газа, если только в волне разрежения нет теплопотерь. Все другие изэнтропы и политропы для двух- и многоатомных газов ($5/3 \ge k > 1$) при $p/p_s < 1$ расположены между $S_{5/3}$ и исходящей из точки *s* и изотермой $p=p_sV_s/V$. На изотерме идеального газа (k=1) dU=0, и из $p_sV_s=pV$ следует, что Q от V растет монотонно: $Q=p_sV_s\ln(V/V_s)$ и все подводимое тепло идет на совершение механической работы

Все эти режимы нестационарны.

2. Стационарные режимы отвечают только состояниям, изменяющимся на pVплоскости вдоль прямой Михельсона (4). Это могут быть режимы Чепмена-Жуге или пересжатые ДВ, поддерживаемые внешним воздействием. Как должно изменяться Q в стационарно случае при расширении газа вдоль этой прямой из состояния p_s, V_s ?

Работа расширения газа после сжатия его ударной волной, (первый закон термодинамики) совершается за счет теплоподвода, возникающего вследствие химической реакции или изменения термодинамической части внутренней энергии газа:

$$dA = dQ - dU$$
 или $dQ = dU + pdV \equiv dH - Vdp.$ (11)

Физико-химическая кинетика в газовой динамике

Подставляя в (11) из (4) $dp = -j^2 dV$ и интегрируя с условиями $Q(V_s)=0$, $H(V_s)=H_s$ получаем:

$$Q = H - H_{\rm s} + j^2 ({\rm V}^2 - {\rm V_s}^2)/2.$$
(12)

Расширение газа вдоль ПМ сопровождается возрастанием внутренней энергии (для идеального газа — температуры) среды вплоть до точки, где скорость подвода тепла равна мощности сил, ускоряющих газ: $dQ/dt = [p_s - j^2(V - V_s)] \cdot dV/dt$.

Для совершенного газа, используя уравнение состояния и подставляя (4) в (12) и дифференцируя, имеем: $dQ = [\gamma (p_s+j^2V_s)\cdot dV - (\gamma+1)\cdot j^2V \cdot dV]/(\gamma-1)$. Откуда следует, что максимум тепловыделения на ПМ достигается при объёме $V^* = \gamma \cdot (p_s/j^2 + V_s)/(\gamma+1)$, совпадающем с объёмом в точке Чепмена-Жуге. В формуле (7) в этой точке подкоренное выражение обращается в ноль, и, как следствие, получаются формулы (8) и (9).

Из сравнения формул (9) и (9а) следует, что при $\varphi \neq \varphi_0$ часть химической энергии расходуется на возбуждение колебательных и электронных степеней свободы. Изменение числа вращательных степеней свободы также может вносить свой положительный или отрицательный вклад в энергетический баланс, в зависимости от того, соответственно, уменьшается или увеличивается их число в ходе химической реакции. Для всех смесей типа «В» $\mu_0 > \mu_{CJ}$ и $\gamma_s < \gamma_{fCJ}$, т.е. химическая реакция ведет к упрощению молекул и уменьшению числа внутренних степеней свободы (см. таблицу).

3. Пересжатые детонационные волны. При $D>D_{CJ}$ конечное стационарное равновесное состояние достигается только при наличии поджимающего «поршня», движущегося со скоростью равной скорости газа, которую он получит по достижении химического равновесия. В экспериментах роль поршня играет газ, истекающий из секции высокого давления ударной трубы.

На рисунках 2÷4 изображены ударные и детонационные адиабаты и зависимости (в единицах квадрата скорости звука перед волной $q_{xc}=\Delta H_x^{-0}/c_0^{-2}$) энергии химической связи на единицу массы, выделившейся в ходе реакции по достижении равновесия, построенные по данным [2,3]. Начальные условия приведены в таблице. При нормальной детонации ударная волна переводит газ из начального состояния в точку *1s* (рис.2), соответствующую состоянию за УВ, движущейся со скоростью Чепмена-Жуге. При $D > D_{CJ}$ ударно сжатому состоянию отвечают точки типа 3s или 4s.

Если $q_x>0$, в стационарной части пересжатой волны давление изменяется, спускаясь по ПМ от точки 3s к точке 3e, до пересечения с равновесной адиабатой, определяемой как химическими, так и релаксационными процессами за ударной или пересжатой детонационной волной.

С ростом пересжатия, вследствие усиления диссоциации продуктов детонации, q_x убывает и, в конце концов, меняет знак. Пересечение прямой, восставленной из точки $q_x=0$, с адиабатами (точка 2 на рис.2) определяет параметры волны, при которых тепловой эффект химической реакции, становится равным нулю. В смеси $2H_2+O_2$ и других смесях типа «А» в этой точке детонационная волна вырождается в ударную, со сменой знака q_x давление за ударной волной (точка 4s на рис.2) становится меньше, чем в точке равновесия (4e), т.е. переход к равновесию в этом случае сопровождается **ростом** давления, что соответствует поглощению тепла процессами диссоциации.

Иное мы видим для смесей типа «В» (рис.3). Здесь при $q_x=0$ пересечение равновесной и ударной адиабат не наблюдается. Точка *ls* и вся ударная адиабата могут лежать левее линии $q_x=0$. Имеется диапазон скоростей пересжатой волны, в котором, несмотря на то, что $q_x<0$, переход к равновесию осуществляется с **понижением** давления,. и в ударной волне давление (точка 4s) остается все ёще выше, чем в точке равновесия (4e). Такое «аномальное» поведение давления и наблюдение в эксперименте неустойчивости фронта ДВ в этом диапазоне скоростей свидетельствуют о том, что имеется дополнительный источник энергии, за счет которого за VB тепло подводится к потоку. И только при дальнейшем сильном пересжатии, когда диссоциация поглощает всю дополнительных степеней свободы, наблюдается тенденция к пересечению ударной и детонационной адиабат (рис.3,4).

На рис.4. приведены адиабаты для смеси CH_4+2O_2+7Ar , использовавшейся в экспериментах [6]. Здесь ПМ (max) для максимальной скорости пересжатой волны, выше которой в эксперименте ячеистые структуры не наблюдались (*D*=2700 м/с), проходит вблизи точки пересечения ударной и равновесной адиабат. Для минимальной скорости (*D*=2360 м/с), ниже которой не наблюдались гладкие волны, ПМ (min) проходит вблизи точки пересечения равновесной адиабаты с линией $q_x=0$. Можно считать это совпадением, но область скоростей, при которых можно наблюдать как

гладкие волны, так и ячеистые структуры, в пределах ошибки коррелирует с областью, для которой поведение давления за фронтом волны «аномально».

4. В сильных ударных волнах, как можно видеть, сопоставляя (2), (3) и (3а), происходит «накачка» поступательных и внутренних (при соответствующей интенсивности УВ – и электронных) степеней свободы до уровня, определяемого формулой (10а). При достаточно быстром снижении температуры в примыкающей волне разрежения может происходить «замораживание» колебательных и электронных степеней свободы и создаваться ситуация, в которой их энергия, аналогично химической, выступает как потенциальная по отношению к поступательным и вращательным.

Очевидные условия возникновения неустойчивости в такой системе: достаточно большое число внутренних степеней свободы, пониженная плотность газа, большая крутизна спада поступательной температуры, а также наличие «положительной обратной связи», – повышение давления, возникающее вследствие флуктуаций, должно вести к ускорению выделения энергии, тогда малые возмущения будут усиливаться. Данные условия во всех экспериментах [14÷18], которых наблюдалась неустойчивость УВ, всегда, так или иначе, выполнялись.

Неустойчивость УВ экспериментально наблюдалась даже в одноатомном благородном газе — аргоне [15]. Наличие у атомов аргона долгоживущего метастабильного уровня 4s (11,72 эВ) создает нарушение равновесности течения в волне разрежения и возможность появления неустойчивости. На эту же причину указывает наблюдавшееся в этих экспериментах подавление неустойчивости УВ при добавлении примеси водорода. Дело в том, что последний имеет короткоживущий уровень 2p (12,09 эВ) почти резонансный с 4s (Ar), что приводит (через столкновения) к быстрому опустошению метастабильного уровня аргона и подавлению неравновесности.

Асимметрия процессов возбуждения при ударном переходе и релаксации за ударной волной.

Возбуждение и релаксация степеней свободы во время ударного перехода и последующего течения за ударной волной обладают сильной асимметрией. Молекулы относительно холодной неподвижной среды в переходной зоне подвергаются воздействию молекул горячего газа, вовлеченных еще в упорядоченное движение за УВ с массовой скоростью u=D-v. Таким образом, при столкновениях молекул в переходном слое к энергии теплового движения «горячих» молекул K_{tr} добавляются кинетическая энергия теплового движения «холодных» молекул $K_0 = \frac{RT_0}{2\mu}$ «в направлении движения УВ» и кинетическая энергия упорядоченного движения газа K_y , которая может существенно превосходить K_{tr} .

Сделаем грубую оценку на примере совершенного газа. *К*_{tr} и *К*_y можно выразить через число Маха ударной волны:

$$K_{tr} = \frac{1}{2} \frac{RT_s}{\mu} = \frac{1}{2} \frac{RT_0}{\mu} \frac{[(\gamma - 1)M_0^2 + 2][2\gamma M_0^2 - (\gamma - 1)]}{(\gamma + 1)^2 M_0^2}, \quad K_y = \frac{4\gamma RT_0[M_0^2 - 1]^2}{\mu(\gamma + 1)^2 M_0^2},$$

Откуда «энергия столкновения» молекул в переходном слое относится к энергии теплового движения за ударной волной как:

$$\eta = \frac{K_y + K_0}{K_{tr}} = \frac{8\gamma [M_0^2 - 1]^2 + (\gamma + 1)^2 M_0^2}{[(\gamma - 1)M_0^2 + 2][2\gamma M_0^2 - (\gamma - 1)]}$$

При $M_0>1$ это отношение монотонно возрастает с увеличением M_0 и при $M_0>>1$ стремится к 4/(γ -1), т.е. при 5/3> $\gamma>6/5$ предельное значение η изменяется от 6 для одноатомных газов до 20 для газов с достаточно сложными молекулами. Уже при M=6 величина η составляет 5,3 и 15. Соответственно, во столько же раз поступательная «температура» столкновения будет больше, чем за ударной волной после установления распределения Максвелла.

Реальность таких процессов подтверждена в ряде работ, в частности, в экспериментах [22-23] по изучению спектров аргона, содержащего примеси ($\approx 1\%$) водорода, за ударной волной с числом Маха 6. При установившейся температуре за скачком T_s =3352 К ($\approx 0,3$ эВ.) по данным спектральных измерений концентрация метастабильных атомов аргона (уровень энергии 11,72 эВ), составляла 2·10⁸ атомов/см³, в то время как равновесная их концентрация при данной температуре должна составлять величину в 10⁷ меньше – всего 21 атом в см³! По данным этих измерений средняя «температура» внутри переходной зоны фронта превысила T_s в 1,7 раза.

Рассмотренная «асимметрия» переходного процесса может способствовать накоплению дополнительной энергии внутренних степеней свободы и приводить в определенных условиях к возникновению «сверхравновесных» концентраций радикалов и посредством этого сильно влиять на кинетику начальных стадии химических реакций. Для конденсированных BB возможность таких явлений рассматривалась в [24].

Выводы

1. Неустойчивость ударных и пересжатых детонационных (при $\Delta H_x^0 \le 0$) волн имеет одну ту же природу – ответственным является неравновесное освобождение энергии внутренних степеней свободы при процессах за фронтом УВ. Наличие положительной обратной связи, – ускорения выделения энергии с ростом давления, как это имеет место при химической реакции и в зоне релаксации УВ, – приводит к усилению флуктуаций. Механизм этого освобождения в УВ и ДВ может быть разным.

2. Выделение энергии колебательных и электронных степеней свободы, запасенной во время ударного перехода в процессе релаксации может обуславливать «тепловой эффект», сравнимый с реализующимся при детонации газов.

3. Энергия активации химической реакции в явлении неустойчивости ДВ играет второстепенную роль, поскольку она определяет, главным образом, время задержки воспламенения, в ходе которого энергия практически не выделяется, а газодинамические параметры потока меняются очень мало. Реакции с тройными столкновениями, которые, в основном, и отвечают за освобождение химической энергии, имеют очень малую или «отрицательную» энергию активации, скорость их пропорциональна кубу плотности, а не экспоненте от обратной температуры. Это необходимо учитывать при численных расчетах профиля и устойчивости детонационных волн и сопоставлении данных с экспериментом, поскольку **профиль** параметров в стационарной зоне детонационной волны **определяет кинетика выделения тепла**.

4. Сохранение неустойчивости пересжатых ДВ, когда тепловой эффект химической реакции ΔH_x^0 становится отрицательным (смеси типа «*B*»), объясняется энерговыделением, возникающим вследствие перестройки и «упрощения» молекул в ходе химической реакции. Освобождение накопленной в ходе ударного перехода энергии внутренних степеней свободы, обеспечивает дополнительный подвод энергии к потоку. Волна становится устойчивой, когда при дальнейшем пересжатии этот подвод полностью поглощается усилением диссоциации продуктов детонации.

5. Хотя источник энергии тот же (внутренние степени свободы), неустойчивость УВ не связана с перестройкой молекул, она появляется тогда, когда создаются условия для возникновения неравновесности между поступательными и внутренними степенями свободы. Этому способствует пониженная плотность и наличие большого числа внутренних степеней свободы или метастабильных электронных состояний молекул или атомов среды. Время релаксации колебательных и электронных степеней свободы при таких условиях может оказаться заметно больше, чем поступательных. При достаточно быстром спаде температуры в волне разрежения, создаётся неравновесность между внутренними и поступательными степенями свободы и источник свободной энергии для возникновения неустойчивости.

6. Процессы, происходящие внутри ударного перехода, могут приводить к тому, что по его завершении среда будет иметь большое число активных радикалов, что приведет к резкому изменению кинетики химического превращения. Самовоспламенение может носить характер вырожденного теплового взрыва, без четко выделенного периода индукции. В газах роль такого «вырождающего» фактора или «горячих точек» играют поперечные волны.

Заключение

Необходимо продолжить расчеты пересжатых детонационных волн в смесях второго типа с целью получения уточненных данных о величине энергии внутренних степеней свободы за УВ при скорости, для которой $q_x=0$.

Желательны эксперименты по регистрации перехода пересжатых волн от неустойчивого к устойчивому режиму на современном уровне и для более широкого диапазона смесей, а также уточнение диапазона давлений, в котором наблюдается неустойчивость УВ. Это дало бы возможность получить дополнительные подтверждения выводов этой работы, или найти аргументы против.

Интересно было бы подойти к вопросам устойчивости УВ, используя для расчетов релаксации степеней свободы аппарат уравнений Больцмана.

Работа выполнена при поддержке ведущей научной школы «Механика ударных волн и детонационных процессов» (грант № НШ-2073.2003.1).

Литература:

1. Войцеховский Б.В., Митрофанов В.В., Топчиян М.Е. Структура фронта газовой детонации. Новосибирск: Изд-во СО АН СССР, 1963.

2. Топчиян М.Е. Детонационные волны в газах: Дис.... докт. физ.- мат. наук. Новосибирск, 1974.

3. Николаев Ю.А., Топчиян М.Е. Расчет равновесных течений в детонационных волнах в газах // ФГВ. 1977. №3. С.393-404.

4. Дьяков С.П. Об устойчивости ударных волн // ЖЭТФ. 1954. Т.27, в.3.(9). С.288-295.

5. **Троцюк А.В., Ульяницкий В.Ю.** О параметрах детонационных волн в газе, возбуждаемых при концентрированном выделении энергии// ФГВ. 1983. №6. С.76-82.

6. Манжалей В.И., Субботин В.А. Экспериментальное исследование устойчивости пересжатой детонации в газах // ФГВ. 1976. №6. С.935-942.

 7. Щелкин К.И. Два случая неустойчивого горения // ЖЭТФ. 1959. Т.36, № 2. С.600-606.

8. Зайдель Р.М. Об устойчивости детонационных волн в газовых смесях//Докл. АН СССР. 1961. Т.136, № 5. С.1142-1145.

9. Пухначев В.В. Об устойчивости детонации Чепмена-Жуге // Докл. АН СССР. 1963. Т.149, № 4. С.798-801.

10. Пухначев В.В. Об устойчивости детонации Чепмена-Жуге: Дис.... канд.физ.-мат. наук. Новосибирск, 1963.

11. Пухначев В.В. Об устойчивости детонации Чепмена-Жуге // ПМТФ. 1965. № 4. С.79-85.

12. Erpenbeck J.J. Stability of Idealized One-Reaction Detonations // The Physics of Fluids.1964. v.7. No.5. PP. 684-696.

13. Erpenbeck J.J. Stability of Idealized One-Reaction Detonations: Zero Activation Energy // The Physics of Fluids.1965. v.8. No.6. PP. 1192-1193.

14. Griffiths R., Sanderman R., Hornung H. J.Phys. D: Appl. Phys.J., 1975. V.9 p.1681.

15. Glass L., Lin W. // J. Flu. Mech. 1976. v.84. № 1.

16. Барышников А.С., Бедин А.П., Масленников А.Г., Мишин Г.И. О неустойчивости фронта головной ударной волны.// Письма в ЖТФ. 1979.,т.5, С.281-284.

17. Барышников А.С., Скворцов Г.Е. Неустойчивость ударных волн в релаксирующей среде // ЖТФ. 1979. Т.49, № 11. С. 2483-2485. 18. Мишин Г.И., Бедин А.П., Ющенкова Н.И., Скворцов Г.Е., Рязин А.П. Аномальная релаксация и неустойчивость ударных волн в газах // ЖТФ. 1981. Т.51, № 11.С.2315-2324.

19. Лосев С.А., Ступоченко Е.В., Осипов А.И. Релаксационные процессы в ударных волнах. Физматгиз, Москва, 1965.

20. Термодинамические свойства индивидуальных веществ. Под ред. В.П.Глушко, т.2, Таблицы термодинамических свойств.. Изд. АН СССР, М.; 1962 (См. также: Термодинамические свойства индивидуальных веществ. Под ред. В.П.Глушко, кн.2.,т.2, «Наука», М.; 1979)

21. Васильев А.А. Параметры ударных волн в газах.// Методические указания. Изд. Новосибирского Государственного университета, Новосибирск, 1990, С.26-31.

22. Козлов П.В., Лосев С.А., Романенко Ю.В., Шаталов О.П./ Поступательная неравновесность во фронте ударной волны в аргоне // Препринт № 27-97. Институт Механики МГУ. М., 1997.

23. Козлов П.В., Лосев С.А., Романенко Ю.В./ Поступательная неравновесность во фронте ударной волны в аргоне// Вестник Московского Университета. Серия 3. Физика. Астрономия. 1998, №5, стр.46-51.

24. Дремин А.Н., Савров С.Д., Трофимов В.С.,Шведов К.К./Детонационные волны в конденсированных средах. М.: Наука, 1970, 171 с.

Таблица. Молекулярные массы некоторых смесей, параметры в химпике, в точке Чепмена-Жуге, и пересжатых волн (из [2,3].

	Тип «А»				Тип «В»					
Смеси→ Парам.↓	$2H_2+O_2$	2H ₂ +O ₂ +7Ar	2CO+O ₂	$C_2H_2+24O_2$	CH ₄ +2O ₂	CH_4+2O_2 +2Ar	CH ₄ +2O ₂ +7Ar	2C ₂ H ₂ +5O ₂	$\begin{array}{c} 2C_2H_2+5O_2\\+21Ar\end{array}$	N ₂ O+CO
<i>P</i> ₀ (атм)	0,1	1,0	1,0	0,1	0,1	0,2	1,0	1,0	1,0	1,0
μ_0	12,01	31,56	29,34	31,76	26,68	31,99	35,96	30,30	37,53	36,01
μ_{CJ}	14,08	34,18	34,53	32,30	20,44	27,44	33,72	23.31	35,97	31,50
μ_3	12,37	32,24	30,77	30,59	17,99	25,52	31,55	20,12	33,57	28,57
μ_4	11,23	30,91	28,13	28,99	16,34	24,29	30,15	18,17	32,36	26,73
<i>7</i> 0	1,397	1,554	1,396	1,385	1,360	1,462	1,554	1,328	1,528	1,325
γs	1,320	1,492	1,298	1,283	1,176	1,245	1,357	1,194	1,414	1,209
γ́ſСЈ	1,225	1,419	1,212	1,257	1,227	1,288	1,384	1,266	1,442	1,242
γ _{s3}	1,270	1,462	1,272	1,255	1,155	1,227	1,337	1,188	1,409	1,196
<i>Yf</i> 3	1,254	1,443	1,245	1,258	1,260	1,310	1,416	1,317	1,485	1,274
γs4	1,251	1,448	1,264	1,241	1,151*	1,221	1,331	1,140*	1,406	1,190
Yf4	1,283	1,466	1,273	1,272	1,290	1,328	1,440	1,356	1,514	1,297
π_{s}	30,12	28,74	32,66	24,22	50,74	43,10	34,04	64,59	38,96	45,97
$\pi_{\rm CJ}$	17,32	16,85	18,48	13,20	27,10	25,26	19,48	33,84	22,14	24.58
$\pi_{\rm s3}$	79,72	55,19	86,07	63,89	133,8	82,90	65,51	169,0	74,46	120,6
π_3	78,81	53,66	83,97	60,99	124,2	75,10	61,71	155,0	59,83	111,9
$\pi_{ m s4}$	122,5	75,89	131,8	97,97	205,0*	113,9	90,70	257,6*	102,1	184,3
π_4	125,2	77,54	133,1	97,53	197,4	108,3	89,05	245,1	100,2	176,9
D _{CJ}	2713	1693	1799	1484	2290	1961	1685	2425	1776	1884
<i>D</i> ₃	4368	2331	2896	2390	3686	2699	2319	3904	2446	3033
D_4	5390	2726	3573	2949	4549	3156	2711	4817	2860	3744
Ts	1646	2054	2384	1281	1791	1941	2002	2210	2384	1752
T _{CJ}	3278	3077	3525	2272	3327	3313	3000	4215	3525	3479
T _{s3}	3522	3568	3661	2674	3656	3190	3388	4933	4195	3784
<i>T</i> ₃	3823	3906	4302	3165	3931	3789	3583	5331	4470	4505
$T_{\rm s4}$	4991	4713	5275	3793	5156*	4122	4434	6650*	5590	5459
T_4	4115	4319	4827	3551	4274	4048	3889	6101	5085	5320
$\Delta H_{\rm x}^{0}$	16050	8327	20346	11500	26028	17390	10771	29512	11221	23765

*)Данные для ударных волн взяты из работы [21].

Рис.1 К статье М.Е.Топчияна «К энергетическим...»

Рис.2 К статье М.Е.Топчияна «К энергетическим...»

Рис.3 К статье М.Е.Топчияна «К энергетическим...»

Рис.4 К статье М.Е.Топчияна «К энергетическим...»