УДК 541.126:127; 536.46

КОНСТАНТЫ СКОРОСТИ РЕАКЦИЙ ДЛЯ ИССЛЕДОВАНИЯ ГОРЕНИЯ КИСЛОРОДНО-ВОДОРОДНЫХ СМЕСЕЙ С УЧАСТИЕМ ВОЗБУЖДЕННЫХ АТОМОВ O(¹D), O(¹S) И МОЛЕКУЛ O₂(b¹Σ), O₂(a¹Δ), OH(A²Σ). Л.Б. Ибрагимова, О.П. Шаталов

НИИ механики МГУ им. М.В. Ломоносова (li@imec.msu.ru)

Аннотация

Представлена база данных, содержащая набор химических реакций и их константы скорости в кислородно-водородных смесях с участием электронно-возбужденных атомов O(¹D), O(¹S) и молекул O₂(b¹ Σ), O₂(a¹ Δ), OH(A² Σ). Рекомендации констант скорости реакций выданы на основе анализа обзоров и источников, в которых исследуются результаты экспериментальных работ.

Ключевые слова: константа скорости химической реакции, электронно-возбужденные атомы и молекулы, кислородно-водородная смесь, проблемы горения.

RATE CONSTANTS OF CHEMICAL REACTIONS FOR THE INVESTIGATION OF OXYGEN-HYDROGEN MIXTURE COMBUSTION INVOLVING ELECTRONIC-EXCITED ATOMS $O(^{1}D)$, $O(^{1}S)$ AND MOLECULES $O_{2}(b^{1}\Sigma)$, $O_{2}(a^{1}\Delta)$, $OH(A^{2}\Sigma)$.

L.B. Ibraguimova, O.P. Shatalov

The data base for the set of chemical reactions with their rate constants in oxygen-hydrogen mixtures involving electronic-excited atoms $O({}^{1}D)$, $O({}^{1}S)$ and molecules $O_{2}(b^{1}\Sigma)$, $O_{2}(a^{1}\Delta)$, $OH(A^{2}\Sigma)$ is presented. Recommendations for reaction rate constants were obtained on the basis of analysis of reviews and origin works devoted to the results of experimental studies.

Key words: The rate constant of chemical reaction, electronic-excited atoms and molecules, oxygenhydrogen mixture, combustion problems.

Предисловие

Во многих задачах горения существенную роль играют реакции с участием электронно-возбужденных частиц. В частности, это связано с проблемой сокращения времени задержки воспламенения, ускорения распространения пламени и другими актуальными прикладными задачами. Эти проблемы послужили мотивацией для выполнения работы по созданию базы данных, содержащей константы скоростей химических реакций в кислородно-водородных смесях, содержащих электронно-возбужденные атомы и молекулы.

Настоящая база данных дополняет базу данных для реакций в системе О-Н с участием молекул и атомов в основных электронным состояниях, опубликованную нами ранее (www.chemphys.edu.ru, 2009, т.8). Таблица 1 содержит реакции в системе О-Н с участием электронно-возбужденных атомов O(¹D), O(¹S) и молекул O₂(b¹Σ), O₂(a¹Δ), O₂(A³Σ), OH(A²Σ). Исходными данными для ее создания послужили несколько обзорных работ, посвященных анализу экспериментальных исследований таких реакций. Это дало возможность в дальнейшем в большинстве случаев перейти к рассмотрению первоисточников, т.е. самих

оригинальных исследований. Необходимость этого связана с тем, что помимо значительного количества ошибок, содержащихся в обзорах, часто в них не указывается температурный диапазон применимости константы скорости или ее достоверность, не говоря уже о том, что многие данные оказываются устаревшими. В нескольких случаях оригинальная работа оказывалась недоступной. В этом случае в списке литературы или в комментариях указывается, из какого источника взяты данные со ссылкой на эту работу. В Таблице 1 приводится основной источник информации о константе скорости, в комментарии может содержаться более полная информация. В Таблице 1 отдельно приведены химические реакции, в которых как реагент участвует электронно-возбужденная компонента, и реакции тушения этих же компонент при столкновениях с другими частицами.

Значительное количество данных содержится в исследованиях, связанных с процессами в верхних слоях атмосферы, т.е. только при низких температурах. Возможность расширения температурного диапазона применимости константы скорости в настоящей работе не рассматривается и при необходимости решается каждым пользователем самостоятельно. Многие константы скорости имеют слабую температурную зависимость, поэтому возможность расширения температурного диапазона имеется.

Помимо материала, содержащегося в Таблице 1, существует несколько работ, в которых разными методами оцениваются константы скорости реакций, экспериментальные данные о которых отсутствуют. Оценить достоверность таких констант затруднительно, но в задачах горения оценка возможного влияния таких реакций часто является необходимой. Результаты работ [14] и [33], содержащие такие оцененные константы скорости реакций с участием электронно-возбужденных компонент, приводятся в Таблицах 2 и 3. За небольшим исключением набор реакций, представленных в Таблицах 2 и 3, не дублирует набор реакций Таблицы 1.

Авторы выражают искреннюю благодарность С.А. Лосеву, О.А. Гордееву и Н.А. Славинской за предоставленную библиографическую информацию и В.Н. Ярыгиной за полезную консультацию.

Таблица	1.	Константы	скорости	реакций н	в системе	O-H c	участием	возбужденных	атомов	И
молекул (k_i	$=A_{i}T^{n_{j}}\exp$	(-E/T),	[см, моль,	c]).					

N⁰	Реакция	Μ	Α	n	E, K	Т, погрешн.	Библ.	Комм.
1	$O+O+M \rightarrow O_2(a^1\Delta_g)+M$	O_2	$2.64 \cdot 10^{17}$	-1	0	300-5000 K Δlgk=±0.4	[1, 2]	К1
		Ο	9.5·10 ¹⁷	-1	0	300-5000 K ∆lgk=±0.3	[1, 2]	К1
		Ar	3.3·10 ¹⁶	-1	0	300-5000 K Δlgk=±0.3	[1, 2]	К1
		H_2O	$1.65 \cdot 10^{17}$	-1	0	300-5000 K Δlgk=±0.3	[1, 2]	К1
		N_2	6.6·10 ¹⁶	-1	0	300-5000 K ∆lgk=±0.4	[1, 2]	К1
2	$O+O+M \rightarrow O_2(b^1 \Sigma_g^+)+M$	O_2	1.36·10 ¹⁷	-1	0	300-5000 K Δlgk=±0.4	[1, 2]	K1
		Ο	4.9·10 ¹⁷	-1	0	300-5000 K Δlgk=±0.3	[1, 2]	K1
		Ar	$1.7 \cdot 10^{16}$	-1	0	300-5000 K ∆lgk=±0.3	[1, 2]	К1

		H ₂ O	$8.5 \cdot 10^{16}$	-1	0	300-5000 К ∆lgk=±0.3	[1, 2]	К1
		N_2	$3.4 \cdot 10^{16}$	-1	0	300-5000 K ∆lgk=±0.4	[1, 2]	К1
3	$O_2(a^1\Delta_g)+O(^1S)\rightarrow O+O+O$		$1.74 \cdot 10^{13}$	0	0	298 K, ±46%	[3]	К2
4	$O_2(a^1\Delta_g)+O_3\rightarrow O_2+O_2+O_3$		3.1·10 ¹³	0	2840	280-360 К ∆lgk=±0.1 (при T=298 К)	[4]	К3
			2.3·10 ⁹	0	0	298 К	[4]	К3
5	$O_2(a^1\Delta_g)+O_2(a^1\Delta_g) \rightarrow O_2+O_2(b^1\Sigma_g^+)$		4.2·10 ⁻⁴	3.8	-700	259-1850 К ±25%	[5]	К4
6	$O_2(a^1\Delta_g)+O_2(a^1\Delta_g) \rightarrow O_2+O_2$		5.4·10 ⁷	0	560	250-500 К	[6]	К5
7	$O_2(a^1\Delta_g)+M \rightarrow O_2+M$	0	$\leq 1.2 \cdot 10^{8}$	0	0	297 К	[6]	К6
		Н	$\leq 1.2 \cdot 10^{8}$	0	0	297 K		К7
		O_2	1.8·10 ⁶	0	200	100–450 К, Δlgk=0.2 при T= 298 К	[4]	К8
		H_2	$1.0 \cdot 10^{12}$	0	3850	500-1000 К	[7]	К9
		H_2O	$3.0 \cdot 10^{6}$	0	0	298 K, Δlgk=±0.3	[4]	К10
		OH, HO ₂ , H ₂ O ₂	3.0·10 ⁶	0	0	Т=298 К		K11
		N_2	$\leq 8.4 \cdot 10^4$	0	0	298 К	[4]	К12
		Ar	$1.3 \cdot 10^5$	0	0	298 К	[12]	К13
		He	$4.8 \cdot 10^3$	0	0	298 K, Δk=±30%	[8, 9,12]	К14
8	$O_2(a^1\Delta_g)+O(^1S) \rightarrow O_2(b^1\Sigma_g^+)+O(^1D)$		$1.84 \cdot 10^{13}$	0	0	298 K ±46%	[3]	К15
9	$O_{2}(a^{1}\Delta_{g})+O(^{1}S)\rightarrow$ $\rightarrow O+O_{2}(A^{3}\Sigma_{u}^{+},A^{3}\Delta_{u})$		6.5·10 ¹³	0	0	298 K, ±46%	[3]	К15
10	$O_2(a^1\Delta_g)$ +H \rightarrow OH+O		3.9·10 ¹³	0	2530	300-930 K ∆lgk=±0.1	[7]	К16
11	$O_2(a^1\Delta_g)+H_2\rightarrow HO_2+H$		$2.1 \cdot 10^{13}$	0	18118	300-800 К	[10]	К17
12	$O_2(b^1\Sigma_g^+)+O_3\rightarrow O_2+O_2+O_3$		$9.0.10^{12}$	0	0	298 K, lgk=±0.1	[4]	К18
13	$O_2(b^1\Sigma_g^+)+M \rightarrow O_2(a,X)+M$	O_2	$2.6 \cdot 10^2$	2.4	241	650-1850 K	[12]	К19
			$2.5 \cdot 10^{7}$	0	0	298 K, Δlgk=±0.3	[4]	К19
		O_3	$4.0 \cdot 10^{12}$	0	0	245-360 К	[4]	К20

		N_2	1.26·10 ⁹	0	0	200-350 К	[4]	К21
			6.0·10 ⁹	0	0	1800 K	[12]	К21
		H_2	3.85·10 ¹²	0	600	200-340 К	[22]	К22
		H ₂ O	$2.8 \cdot 10^{12}$	0	0	298 K	[4]	К23
		OH, HO ₂	$2.8 \cdot 10^{12}$	0	0	298 K		К24
		H_2O_2	6·10 ¹²	0	0	300 K	[12]	К25
		Ο	$4.8 \cdot 10^{10}$	0	0	298 K	[4]	К26
		Н	$4.8 \cdot 10^{10}$	0	0	298 K	[14]	К27
14	$O(^{1}S)+O_{3}\rightarrow O_{2}+O_{2}$		$3.5 \cdot 10^{14}$	0	0	300-700 К	[6, 28]	К28
15	$O(^{1}S)+O_{2}\rightarrow O(^{1}D, ^{3}P)+O_{2}$		2.9·10 ¹²	0	850	200-450 К	[6]	К29
16	$O(^{1}S)+O \rightarrow O(^{1}D, ^{3}P)+O$		3.0·10 ¹³	0	300	200–370 К	[6]	К29
17	$O(^{1}D)+O_{3}\rightarrow O+O+O_{2}$		$7.2 \cdot 10^{13}$	0	0	100-400 K ∆lgk=±0.2	[4]	К30
18	$O(^{1}D)+O_{3}\rightarrow O_{2}+O_{2}$		$7.2 \cdot 10^{13}$	0	0	100-400 K Δlgk=±0.2	[4]	K30
19	$O(^{1}D)+O_{2}\rightarrow O+O_{2}(a^{1}\Delta_{g})$		$\leq 9.6 \cdot 10^{11}$	0	-67	200-350 К Δlgk=±0.2 (при T=298 K)	[4]	К31
20	$O(^{1}D)+O_{2}\rightarrow O+O_{2}(b^{1}\Sigma_{g}^{+})$		$1.54 \cdot 10^{13}$	0	-67	200-350 К Δlgk=±0.1 (при T=298 K)	[4]	К31
21	$O(^{1}D)+M\rightarrow O+M$	O ₂	2.9·10 ¹²	0	-67	200-350 К	[4]	К31
		N_2	$1.2 \cdot 10^{13}$	0	-130	190-500 К Δlgk=±0.05 (при T=298 K)	[4]	К32
		0	3.0·10 ¹²	0	0	298 К	[9]	К33
		Ar	3.0·10 ¹¹	0	0	110-333 К	[9]	К33
		H ₂ O	<3.97.10 ¹¹	0	0	298 К	[4]	К34
		H_2	$\leq 3.6 \cdot 10^{12}$	0	0	298 K, $\Delta lgk=\pm 0.1$	[4]	К35
22	$O(^{1}D)+H_{2}\rightarrow H+OH$		7.2·10 ¹³	0	0	200-350 К Δlgk=±0.1 (при T=298 K)	[4]	К35
23	$O(^{1}D)+H_{2}O\rightarrow OH+OH$		9.8·10 ¹³	0	-60	235-370 K Δlgk=±0.1	[22]	К34
24	$O(^{1}D)+H_{2}O\rightarrow H_{2}+O_{2}$		$< 1.32 \cdot 10^{12}$	0	0	Т=298 К	[4]	К34
25	$OH(A^{2}\Sigma)+M \rightarrow OH+M$	H ₂ O	$8.85 \cdot 10^{12}$	0.5	0	500-2300 К	[15]	К36

		H_2	$3.3 \cdot 10^{12}$	0.5	0	800-2500 K, ±25%	[16]	К37
		O_2	$1.76 \cdot 10^{12}$	0.5	0	800-2500 K, ±25%	[16, 17]	К38
		N_2	$1.3 \cdot 10^{11}$	0.5	0	800-2500 K, ±25%	[16, 17]	К39
		Ar	$< 1.3 \cdot 10^{10}$	0.5	0	800-2500 K, ±25%	[17]	К40
26	$OH(A^{2}\Sigma, v'=0) \rightarrow OH+hv_{0}$	-	$\tau=700 \text{ns}^{*)}$	-	-		[18]	K41
	$OH(A^{2}\Sigma, \nu'=2) \rightarrow OH+h\nu_{2}$	-	$\tau=90 \text{ns}^{*)}$	-	-		[18]	К41

^{*)} Величина т – время жизни электронного состояния.

Комментарии к Таблице 1.

К1. Оценка. Константы скорости рекомбинации O+O+M в состояния O₂(a) или O₂(b) получены с использованием суммарной константы скорости рекомбинации в состояния O₂(X, a, b) из работы [1] с учётом статистического веса q электронного состояния образующейся молекулы [2]. Для O₂(X³ Σ_g^-) q_X=0.5, для O₂(a¹ Δ_g) q_a=0.33, для O₂(b¹ Σ_g^+) q_b=0.17.

К2. Константа скорости реакции $O_2(a^1\Delta_g)+O(^1S)\to O+O+O$ используется в ряде работ со ссылкой на монографию [3]. Отмечается, что константа скорости не зависит от температуры. Подробнее см. комментарий **К15** к реакциям 8, 9.

К3. Константа скорости реакции $O_2(a^1\Delta_g)+O_3\rightarrow O_2+O_2+O$ рекомендована в работе [4] как осредненное значение результатов экспериментальных работ 1971-1972 гг. [37, 38], выполненных при фотолизе озона и при исследовании микроволнового разряда в кислороде в проточном и статическом реакторах. Следует иметь в виду, что в ряде работ (см., например, [3, 8, 12]) реакция $O_2(a^1\Delta_g)+O_3$ описывается как обычная реакция тушения кислорода, без указания на распад озона в процессе тушения, причем ссылки даются на те же первоисточники [37, 38].

К4. Константа скорости реакции пулинга $O_2(a^1\Delta_g)+O_2(a^1\Delta_g)\rightarrow O_2+O_2(b^1\Sigma_g^+)$ приводится в [5] для T=259–1850K по данным как низкотемпературных измерений, так и исследований на ударных трубах. Близкое значение приводится (на графике) и в работе [34]. Данные различных авторов хорошо согласуются в пределах разброса, не превышающего 25%.

К5. Константа скорости взаимного тушения $O_2(a^1\Delta_g)+O_2(a^1\Delta_g) \rightarrow O_2+O_2$ (6) приводится в работе [11] в предположении разветвления реакции $O_2(a)+O_2(a)$ на каналы $O_2+O_2(b^1\Sigma_g^+)$ (5) и

 O_2+O_2 (6) в отношении 1:1. Константа скорости k_6 приводится в [11] со ссылкой на работу [6], где суммарная величина дается для диапазона температур T=250-500K. Идущий параллельно процесс радиационной дезактивации молекул $O_2(a^1\Delta_g)$ путем димольного излучения (λ =634 нм) имеет на порядки меньшую величину константы скорости (k=16±4 см³·моль⁻¹·c⁻¹, [36]).

К6. Приведенная в таблице константа скорости тушения кислорода в реакции $O_2(a^1\Delta_g)+O \rightarrow O_2+O$ взята из работы [6], ($k \le 1.2 \cdot 10^8$), где она даётся со ссылкой на публикацию [35]. В работе [19] приводится большее значение константы ($k \le 4.2 \cdot 10^8$ см³моль⁻¹·c⁻¹), использовавшееся, в частности в работах [8, 12]. Все эти работы, в свою очередь, опираются на экспериментальные исследования 1968 – 1969 годов.

К7. Константа скорости тушения кислорода в реакции $O_2(a^1\Delta_g)+H \rightarrow O_2+H$ дана по аналогии с константой скорости тушения атомом О из работы [6]. В [14] константа приводится также по

аналогии с тушением атомом О, но с использованием данных $k=4.2 \cdot 10^8$ см³моль⁻¹·с⁻¹ из работы [19].

К8. Константа скорости тушения молекул кислорода в состоянии $O_2(a^1\Delta_g)$ молекулами $O_2(X)$ приводится из обзора [4] при T=100–450K, Δ lgk=0.2 при T=298K.

К9. Константа скорости реакции $O_2(a^1\Delta_g)+H_2 \rightarrow O_2+H_2$ рекомендована в работе [7] на основании экспериментальных данных [20, 21], T=500–1000K.

К10. Константа скорости тушения дана в [4] для T=298K, $\Delta lgk = \pm 0.3$. В работе [22] то же значение константы скорости приписывается брутто–реакции:

$$O_2(a)+H_2O \rightarrow O_2(X)+H_2O \rightarrow продукты.$$

К11. Константа приводится по аналогии с константой скорости тушения молекул $O_2(a)$ при столкновении с молекулами H_2O , приведенной в работе [4]. В [14] приводится близкое значение константы $k=3.4\cdot10^6$ см³·моль⁻¹·c⁻¹.

К12. Константа скорости тушения молекул $O_2(a)$ азотом приводится в работе [4] по результатам исследования, выполненного в 1973 г. в работе [41] по поглощению излучения с длиной волны 144 нм молекулами $O_2(a)$.

К13. Рекомендация работы [12], полученная на основании анализа пяти экспериментальных работ.

К14. В работах [8, 9, 12] приводится рекомендованная здесь константа, основанная на анализе трех экспериментальных работ 1971 – 1973 гг.

К15. В работе [3] приводятся имеющиеся в литературе значения измеренных интегральных констант скорости трёх каналов реакции $O_2(a)+O(^1S)$ при T=298K:

$$O_2(a) + O(^1S) \rightarrow O(^1D) + O_2(b) \tag{1}$$

$$\rightarrow O + O_2(A^3 \Sigma_u^+, A'^3 \Delta_u)$$
⁽²⁾

$$\rightarrow 0+0+0$$
 (3)

Вклад каждого из трёх каналов составляет: (1) – 18%; (2) – 65%; (3) – 17%.

Ошибка результатов измерений – порядка 40%. Близкие значения констант со ссылками на те же источники приводятся в [8]. См. также комментарий **К2** к реакции (3).

К16. Приведена константа скорости реакции $O_2(a^1\Delta_g)+H \rightarrow OH+O$, аппроксимированная в работе [7] по данным экспериментальных работ [19, 23]. В работе [10] приводится близкое (в

пределах множителя 2) значение константы $k=1.1 \ 10^{14} \exp(-\frac{3188}{T})$, см³ моль⁻¹ · c⁻¹.

К17. Константа скорости реакции $O_2(a^1\Delta_g)+H_2 \rightarrow HO_2+H$ приводится по данным работы [10], где она представлена как максимально возможная величина. В работе [10] приводится также константа скорости обратной реакции, использованная для расчета параметров пламени в горелке при T=300–800 К:

HO₂+H→O₂(a)+H₂, k=6·10¹² exp(
$$-\frac{1518}{T}$$
), см³·моль⁻¹·с⁻¹

К18. Данные работы [4]. В [24] отмечается, что в диапазоне T = 295–360К константа скорости реакции $O_2(b^1\Sigma_g^+)+O_3 \rightarrow O_2+O_2+O$ не зависит от температуры. См. также комментарий **К20** к реакции 13.

К19. В [12] приводятся данные экспериментальной работы [25], полученные при T=650–1850К на ударной трубе. Авторы [12] отмечают, что каналы тушения молекулы $O_2(b)$ молекулами O_2

$$O_2(b^1\Sigma_g^+) + O_2 \longrightarrow O_2(a^1\Delta_g) + O_2$$
(1),

$$\rightarrow O_2(X) + O_2 \tag{2}$$

надёжно не исследованы. Однако, согласно [12], основным каналом тушения является канал (1).

В работе [4] приводятся данные о суммарной константе скорости тушения молекул $O_2(b^1\Sigma_g^+)$ в состояния *а* и *X* при T=298K, основанные на результатах пяти экспериментальных работ. Эта константа в 4 раза меньше экстраполяции к T=300K данных работы [25].

К20. Тушение озоном молекулы O₂(b) рассматривается в литературе по трём каналам:

$$O_2(b) + O_3 \rightarrow O_3 + O_2(a) \tag{1}$$

$$\rightarrow O_3 + O_2(X) \tag{2}$$

$$\rightarrow O + O_2 + O_2 \tag{3}$$

В работах [4, 24, 27] приводится значение k=k₁+k₂+k₃=1.32·10¹³ см³·моль⁻¹·с⁻¹ при T=298К.

В [4, 27] отмечается, что по каналу (3) протекает $70 \pm 20\%$ реакции. Соответствующее значение константы скорости для этого канала приводится в Таблице 1 в качестве константы скорости реакции 12. Остальные 30% отнесены к суммарной константе скорости каналов (1) и (2) (реакция 13). В работе [24] указывается, что в исследованном температурном интервале 245-362К наблюдается слабая температурная зависимость константы скорости с энергией активации менее 0.6 ккал/моль.

К21. В работе [4] приводятся данные о константе скорости тушения молекулы $O_2(b)$ азотом при T = 200 – 350 K.

$$O_2(b^1\Sigma_g^+) + N_2 \rightarrow O_2(a^1\Delta_g) + N_2$$
(1)

$$\rightarrow O_2(X) + N_2 \tag{2},$$

причём считается, что k_{тушения}=k₁+k₂.

В [12] отмечается, что с ростом температуры (Т≤1800К) константа скорости слабо возрастает до величины 6·10⁹ см³·моль⁻¹·с⁻¹. В работе [9] авторы относят эту константу к каналу (1).

К22. Константа скорости тушения кислорода в состоянии $O_2(b^1\Sigma_g^+)$ молекулами H_2 приводится в работе [22]. Константа приписывается только каналу тушения в состояние $O_2(a^1\Delta_g)$. В [22] отмечается, что возможные каналы взаимодействия молекул $O_2(b^1\Sigma_g^+)$ с водородом с образованием продуктов 2OH или O+H₂O имеют вероятность на несколько порядков меньшую, чем тушение по каналу в состояние $O_2(a^1\Delta_g)$.

К23. Константа скорости тушения кислорода в состоянии $O_2(b^1\Sigma_g^+)$ молекулами воды приводится в работе [4] как суммарная константа тушения в состояния $O_2(a, X)$ при T = 298K:

$$O_2(b)+H_2O \rightarrow O_2(a, X)+H_2O$$

К24. Экспериментальные данные в литературе найти не удалось. Константа скорости тушения молекул $O_2(b^1\Sigma_g^+)$ на M=OH, HO₂ приводится по аналогии с тушением молекул $O_2(b^1\Sigma_g^+)$ на M=H₂O из работы [4]. В работе [14] константа скорости тушения $O_2(b)$ при столкновении с M=OH и HO₂ даётся также по аналогии с тушением на M=H₂O, но со ссылкой на более старые и незначительно большие данные из [12] (к=(4±0.3)·10¹² см³моль⁻¹с⁻¹).

К25. Константа скорости тушения приводится в работе [12] по материалам работы [39], выполненной в струевой разрядной установке путем регистрации излучения молекул $O_2(b^1\Sigma_g^+)$ в парах перекиси водорода и продуктов его распада, с последующим моделированием процессов в газе с использованием механизма из 22 реакций.

К26. В таблице дано суммарное значение константы скорости тушения молекул $O_2(b^1 \Sigma_g^+)$ атомами O: k = k₁ + k₂ по каналам (1) и (2):

$$O_2(b^1\Sigma_g^+) + O \rightarrow O_2(a^1\Delta_g) + O$$
(1),

$$\rightarrow O_2(X) + O$$
 (2).

Эта константа приводится в работах [4, 8, 12, 27]. Во многих работах отмечается, что преобладающим каналом тушения является канал (1).

К27. Константа скорости тушения молекул $O_2(b^1 \Sigma_g^+)$ атомами водорода приводится в [14] по аналогии с константой скорости тушения атомами О.

К28. Константа скорости реакции (14) $O({}^{1}S)+O_{3}\rightarrow O_{2}+O_{2}$, содержащаяся в экспериментальных работах [13,40], цитируется, в частности, в работах [6, 28]. В исследовании [32], выполненном в тлеющем разряде, получено практически такое же значение константы этой реакции $\kappa = (4.8 \pm 1.8) \cdot 10^{14} \text{ см}^{3}/(\text{моль c}).$

К29. Константы скорости тушения атомов O(¹S) в реакциях (15) O(¹S)+O₂ \rightarrow O(¹D,³P)+O₂ и (16) O(¹S)+O \rightarrow O(¹D,³P)+O исследовалась в нескольких работах. Здесь константы приводятся по работе [40]. В работе [6] указаны каналы ветвления продуктов: 31% в состояние ¹D и 69% в состояние ³P. В неучтенной в упомянутых исследованиях работе [32], выполненной в тлеющем разряде, получено близкое значение реакции (15) при T=300K: к=(3.0 ±1.8) 10¹¹ см³/(моль·с).

КЗ0. Константа скорости реакций $O(^{1}D)+O_{3}\rightarrow O+O+O_{2}$ (17) и $O(^{1}D)+O_{3}\rightarrow O_{2}+O_{2}$ (18) приводятся в работе [4] на основании анализа пяти экспериментальных работ, посвященных измерению суммарной константы скорости реакций $O(^{1}D)+O_{3}$, и двух исследований, содержащих анализ эффективностей этих реакций. По оценке этой же работы [4], вероятности других каналов реакции, в частности, с образованием молекул $O_{2}(a)$ и $O_{2}(b)$, не превышают 10%.

К31. В литературе рассматриваются три канала тушения атома O(¹D) молекулой O₂:

$$O(^{1}D)+O_{2} \rightarrow O(^{3}P)+O_{2}(b^{1}\Sigma_{g}^{+})$$
(1)

$$\rightarrow O(^{3}P) + O_{2}(a^{1}\Delta_{g})$$
⁽²⁾

$$\rightarrow O(^{3}P) + O_{2}(X^{3}\Sigma_{g}^{-})$$
(3)

Имеющиеся экспериментальные данные немногочисленны. Здесь приводятся константы скорости реакций из работы [4], вычисленные с учётом разветвления каналов q по данным работ [29, 30]: $q_b = 0.8$, $q_a \le 0.05$, $q_x = 0.15$.

К32. Рекомендация для констант скорости тушения $O({}^{1}D)$ молекулами N_{2} дана в работе [4] на основании анализа восьми экспериментальных работ, выполненных преимущественно с использованием фотолиза озона или молекул $N_{2}O$ с последующей регистрацией атомов $O({}^{1}D)$ по поглощению, излучению или с помощью лазерной индуцированной флюоресценции.

К33. Тушение атомов $O(^{1}D)$ в реакции $O(^{1}D)$ +Ar $\rightarrow O(^{3}P)$ +Ar дано по материалам работы [9], в которой приведены результаты десяти экспериментальных исследований этого процесса.

Константа скорости тушения атомов O(¹D) атомами кислорода взята из той же работы по материалам двух исследований 1986 и 1993 годов.

К34. Взаимодействие атома O(¹D) с молекулами воды идет преимущественно по каналу O(¹D)+H₂O \rightarrow OH+OH (реакция 23 в таблице 1). В работе [4] на основании анализа семи экспериментальных работ рекомендуется константа скорости реакции (23) $k = 1.29 \cdot 10^{14}$ см³моль⁻¹с⁻¹ при T=298K. В работе [22] на базе практически тех же экспериментальных данных рекомендуется близкое значение той же константы: $k = 1.2 \cdot 10^{14}$ см³моль⁻¹·с⁻¹ при T=298K и слабая температурная зависимость при T=235-370K. Другие каналы реакции

$$O(^{1}D)+H_{2}O \rightarrow H_{2}+O_{2}$$
 (реакция 24)
 $\rightarrow O(^{3}P)+H_{2}O$ (реакция 21)

имеют константы скорости на 2-3 порядка меньше при T=298K.

К35. Реакция $O(^{1}D)+H_{2}\rightarrow O+H_{2}$ (тушение, реакция 21) по данным работ [4, 27] составляет менее 5% от суммарной константы скорости реакций (21) + (22). Данные работ [7, 22] по определению константы скорости реакции (22) $O(^{1}D)+H_{2}\rightarrow H+OH$ близки. Константа рекомендована в работе [4].

К36. Константа скорости тушения радикала OH(A² Σ) молекулами воды OH(A² Σ)+H₂O \rightarrow OH+H₂O вычислена с использованием экспериментальных данных о сечении о тушения радикала OH при T = 500–2300K, приведенных в [15]: k = σ ·<v>, где <v> = (8RT/ $\pi\mu$)^{1/2} – средняя скорость сталкивающихся частиц, μ – их приведённая масса.

К37. Константа скорости тушения радикала $OH(A^2\Sigma)$ молекулами водорода $OH(A^2\Sigma)+H_2 \rightarrow OH+H_2$ приводится по результатам измерения сечения этого процесса в работе [16]. В диапазоне температур T = 800–1200К наблюдается слабая зависимость сечения тушения от температуры. На основании этих данных рассчитана константа скорости тушения, см. комментарий **К36.**

К38. Сечение тушения радикала ОН($A^2\Sigma$) молекулами кислорода в работе [16] измерено при T=1200K. Более ранние измерения [31] при T=1090K и данные работы [17], полученные при T=1900–2300K, в пределах погрешности ±25% совпадают с результатами [16]. Отмечается практически постоянная величина сечения тушения при температурах выше 800K. На основании этих данных рассчитана константа скорости тушения, см. комментарий **К36**.

К39. Сечение тушения радикалов ОН($A^2\Sigma$) молекулами азота приводятся в работах [17, 31]. Результаты этих работ совпадают в диапазоне T=1200–2300K и равны 6·10¹², см³·моль⁻¹·с⁻¹. В работе [16] приводятся данные при более низких температурах. Отмечается практически постоянная величина сечения тушения при температурах выше 800K. На основании этих данных рассчитана константа скорости тушения, см. комментарий **К36**.

К40. Сечение тушения радикалов $OH(A^2\Sigma)$ атомами аргона измерялось в работе [17] на ударной трубе методом лазерной индуцированной флюоресценции (LIF) при T=1900-2500K. На основании данных об измеренных сечениях рассчитана константа скорости тушения, см. комментарий **К36.** Температурный диапазон указан с учетом более ранних экспериментальных результатов.

К41. В классической работе [18] измерялось время жизни радикала $OH(A^2\Sigma)$ на нижних колебательных уровнях v'=0, 1, 2 путем регистрации эмиссионных спектров радикалов OH, возбуждаемых в парах воды электронным пучком, $OH(A^2\Sigma, v'=0) \rightarrow OH+hv$. Для v'=0 состояния с вращательными квантовыми числами N>23 частично предиссоциированы; для v'=1 – частично предиссоциированы состояния с вращательными квантовыми числами N>14. Колебательный уровень v'=2 предиссоциирован полностью для всех вращательных уровней. В связи с этим время жизни т электронного состояния OH($A^2\Sigma$) существенно зависит от его

колебательного и вращательного уровня. В работе [18] было определено время жизни т(v'=0)≈700 нс и т(v'=2)≈90 нс.

N⁰	Реакция	Α	n	E, K
1	$O+H+M\rightarrow OH(A^{2}\Sigma)+M$, $M=O_{2}$, Ar	$2.98 \cdot 10^{18}$	-1	12000
	$M=H_2$	$2.0 \cdot 10^{11}$	0.18	4035
	M=OH	$6.0 \cdot 10^{17}$	-1	0
2	$O(^{1}D)+H+M\rightarrow OH(A^{2}\Sigma)+M$	$2.1 \cdot 10^{18}$	-1	0
4	$OH(A^{2}\Sigma)+O_{2}\rightarrow O_{3}+H$	$2.3 \cdot 10^{12}$	0.5	0
5	$OH(A^{2}\Sigma)+H_{2}O\rightarrow H_{2}O_{2}+H$	$7.5 \cdot 10^{12}$	0	276
6	$OH(A^{2}\Sigma)+H_{2}\rightarrow H_{2}O+H$	$5.1 \cdot 10^{12}$	0.5	0
7	$OH(A^{2}\Sigma)+O_{2}\rightarrow HO_{2}+O$	$1.16 \cdot 10^{12}$	0.5	0
8	$H_2 + HO_2 \rightarrow H_2O + OH(A^2\Sigma)$	$4.8 \cdot 10^{19}$	-1.7	19000

Таблица 2. Константы скорости реакций по работе [33].

Комментарии к Таблице 2.

Константы скорости реакций в [33] оценены путем подгонки результатов расчетов концентрации радикалов ОН за фронтом ударной волны и измеренной эволюции излучения $OH(A^2\Sigma \rightarrow X^2\Sigma)$.

Таблица	3.	Константы	ско	рости	реакций	по	работе	[14].
---------	----	-----------	-----	-------	---------	----	--------	-----	----

N⁰	Реакция	Α	n	E, K
1	О₂(а)+М→О+О+М, М - любое	$5.4 \cdot 10^{18}$	-1	4.82+4
2	$O_2(b^1\Sigma_g^+)+M \rightarrow M+O+O, M$ - любое	$5.4 \cdot 10^{18}$	-1	4.04+4
3	$O_3+M \rightarrow O_2(a^{-1}\Delta_g)+O+M, M$ - любое	$4.0 \cdot 10^{14}$	0	22790
4	$O_3+M \rightarrow O_2(b^1 \sum_{g}^{+})+O+M, M$ - любое	$4.0 \cdot 10^{14}$	0	30383
5	$HO_2+M \rightarrow H+O_2(a)+M$	$6.93 \cdot 10^{14}$	0	23000
-5	$O_2(a^{-1}\Delta_g)+H+M \rightarrow HO_2+M$	$1.5 \cdot 10^{15}$	0	-500
6	$HO_2+M \rightarrow H+O_2(b)+M$	$3.6 \cdot 10^{14}$	0	23000
7	$O_2(b)+H+M\rightarrow HO_2+M$	$1.5 \cdot 10^{15}$	0	-500
8 ¹⁾	$O(^{1}D)+M\rightarrow O+M, M=H_{2}O_{2}, OH, HO_{2}, H_{2}O$	$7.2 \cdot 10^{12}$	0	0
	M=O ₂ , O, H, O ₃	$1.93 \cdot 10^{13}$	0	-67
9	$O(^{1}D)+O_{2}(a) \rightarrow O+O_{2}(b)$	$3.0 \cdot 10^{13}$	0	0
10	$O_2+O_2(b) \rightarrow O+O_3$	$1.2 \cdot 10^{13}$	0	32761
11	$O_2+O_2(a) \rightarrow O+O_3$	$1.2 \cdot 10^{13}$	0	39732
12	$O_2(b)+H\rightarrow OH+O$	$1.1 \cdot 10^{14}$	0	1620
13	$O_2(a)+H_2 \rightarrow OH+OH$	$1.7 \cdot 10^{15}$	0	17906
14	$O_2(b)+H_2 \rightarrow OH+OH$	$1.7 \cdot 10^{15}$	0	14657
15 ²⁾	$O(^{1}D)+O_{3}\rightarrow O_{2}+O_{2}(a)$	$9.1 \cdot 10^{12}$	0	0

16 ²⁾	$O(^{1}D)+O_{3}\rightarrow O_{2}+O_{2}(b)$	$4.6 \cdot 10^{12}$	0	0
17	$O(^{1}D)+HO_{2}\rightarrow OH+O_{2}$	$1.98 \cdot 10^{13}$	0	0
18	$O(^{1}D)+HO_{2}\rightarrow OH+O_{2}(a)$	$1.3 \cdot 10^{13}$	0	0
19	$O(^{1}D)+HO_{2}\rightarrow OH+O_{2}(b)$	$0.67 \cdot 10^{13}$	0	0
20	$O_2(b)+H2\rightarrow HO_2+H$	$2.1 \cdot 10^{13}$	0	11508
21	$O_2(a)+OH\rightarrow H+O_3$	$4.4 \cdot 10^{7}$	1.44	27209
22	$O_2(b)+OH\rightarrow H+O_3$	$4.4 \cdot 10^{7}$	1.44	19616
23	$O_2(a)+OH \rightarrow O+HO_2$	$1.3 \cdot 10^{13}$	0	17132
24	$O_2(b)+OH \rightarrow O+HO_2$	$1.3 \cdot 10^{13}$	0	10111
25	$O_2(a)+H_2O\rightarrow HO_2+OH$	$1.5 \cdot 10^{15}$	0.5	25209
26	$O_2(b)+H_2O\rightarrow HO_2+OH$	$1.5 \cdot 10^{15}$	0.5	17616
27	$O_3+OH \rightarrow HO_2+O_2(a)$	$3.17 \cdot 10^{11}$	0	1000
28	$O_3+OH\rightarrow HO_2+O_2(b)$	$1.63 \cdot 10^{11}$	0	1000
29	$O_3+HO_2\rightarrow OH+O_2+O_2(a)$	$0.66 \cdot 10^{10}$	0	1000
30	$O_3+HO_2\rightarrow OH+O_2+O_2(b)$	$0.34 \cdot 10^{10}$	0	1000
31	$H_2O_2+O_2(a) \rightarrow HO_2+HO_2$	$3.0 \cdot 10^{13}$	0	10717
32	$H_2O_2+O_2(b) \rightarrow HO_2+HO_2$	$3.0 \cdot 10^{13}$	0	4510
33	$H_2O+O_2(a) \rightarrow H_2O_2+O$	$3.4 \cdot 10^{10}$	0.5	34079
34	$H_2O+O_2(b) \rightarrow H_2O_2+O$	$3.4 \cdot 10^{10}$	0.5	27195

1) Примечание 1.Приводимые здесь значения констант скорости тушения O(¹D) на M=H₂O₂, O, O₂ существенно отличаются от приводимых в таблице 1, несмотря на частично совпадающие первоисточники.

2) Примечание 2. По поводу реакций (15, 16) см. Комментарий К30 к таблице 1.

Комментарии к Таблице 3.

В работе [14] при оценке констант скорости реакций 1, 2, 12-14, 20-26, 31-34 (нумерация реакций в таблице 3) энергия активации вычислялась в предположении, что форма потенциальной поверхности реакции при взаимодействии частиц с электронновозбужденными атомами $O(^{1}D)$ и молекулами $O_{2}(b^{1}\Sigma)$, $O_{2}(a^{1}\Delta)$ совпадает с формой потенциальной поверхности для молекул в основном состоянии.

При вычислении констант скорости безбарьерных реакций 5-7, 17-19, 27-30 с участием электронно-возбужденных молекул, продуктом которых является кислород в состояниях $O_2(X, a, b)$, вероятность их образования пропорциональна кратности вырождения соответствующего состояния $q_e: q_x=0.5, q_a=0.33, q_b=0.17$.

При оценке констант скорости диссоциации озона в реакциях 3, 4 с образованием молекул O₂ в электронно-возбужденных состояниях считалось, что барьер реакции увеличивается на величину, соответствующую разнице в энергиях возбужденного состояния по сравнению с образованием невозбужденного кислорода.

Литература

1. Konnov A.A. Remaining uncertainties in the kinetic mechanism of hydrogen combustion // Combustion and flame. 2008. V. 152. P. 507–528.

- 2. Словецкий Д.И. Механизм химических реакций в неравновесной плазме. М.: Наука. 1980. 310 с.
- 3. Slanger T.G. Reactions of electronically excited diatomic molecules. In book: Reactions of Small Transient Species. Ed. by A. Fontijn, M.A.A. Cline. Academic Press. 1983. P. 231–310.
- Atkinson R., Baulch D.L., Cox R.A. et al. Summary of evaluated kinetic and photochemical data for atmospheric chemistry. IUPAC Web Version. February. 2006. <u>http://www.iupac-kinetic.ch.cam.ac.uk/</u>
- 5. Heidner R.F. et al. Temperature dependence of $O_2(a'\Delta_g)+O_2(a'\Delta_g)$ and $I(2P_{3/2})+O_2(a'\Delta_g)$ energy pooling // J. Chem. Phys. 1981. V.74. No 10. P. 5618–5626.
- Herron J.T., Green D.S. Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reaction //Plasma Chemistry and Plasma Processing. 2001. V. 21. P. 459–481.
- 7. Попов Н.А. Влияние неравновесного возбуждения на воспламенение водородно-кислородных смесей // Теплофизика высоких температур. 2007. Т. 45. № 2. С. 296–315.
- 8. Дворянкин А.Н., Ибрагимова Л.Б., Кулагин Ю.А., Шелепин Л.А. Механизм электронной релаксации в атомно-молекулярных средах. В сб.: Химия плазмы. Вып. 14. Под ред. Смирнова Б.М. М.: Энергоатомиздат. 1987. С. 102–127.
- 9. NIST Chemical kinetics database. Standard reference database 17-2Q98. 1998. NIST. Gaithersburg. MD. USA.
- 10. Басевич В.Я., Беляев А.А. Расчет увеличения скорости водородно-кислородного пламени при добавках синглетного кислорода // Хим. физика. 1989. Т. 8. № 8. С. 1124-1127.
- 11. Stafford D.S. Modeling of singlet-delta oxygen yields in flowing electric discharges. Thesis M.S. Univ. of Illinois. Urbana. 2004. 103 p.
- 12. Кулагин Ю.А., Шелепин Л.А., Ярыгина В.А. Кинетика процессов в газовых средах, содержащих метастабильный кислород // Труды Физического института им. П.Н. Лебедева. РАН. 1994. Т. 218. С.166–227.
- 13. London G., Gilpin R., Schiff H.I., Welge K.H. Collisional deactivation of 0(¹S) by O₃ at room temperature // J. Chem. Phys. 1971. V. 54. No. 10. P. 4512-4513.
- 14. Старик А.М., Титова Н.С. О кинетике инициирования детонации в сверхзвуковом потоке смеси H₂+O₂ (воздух) при возбуждении молекул O₂ резонансным лазерным излучением // Кинетика и катализ. 2003. Т. 43. № 1. С. 1–12.
- 15. Bailey A.E., Heard D.E., Henderson D.A., Paul P.H. Collisional quenching of $OH(A^2\Sigma^+, v'=0)$ by H_2O between 211 and 294K and the development of a unifield model for quenching // Chem. Phys. Lett. 1999. V. 302. P. 132–138.
- 16. Smith G.P., Crosley D.R. Quenching of OH ($A^2\Sigma^+$, v' = 0) by H₂, N₂O and hydrocarbons at elevated temperatures // J. Chem. Phys. 1986. V. 85. No 7. P. 3896-3901.
- 17. Paul P.H., Durant G.L., Gray J.A. Collisional electronic quenching of OH A²Σ(v'=0) measured at high temperature in a shock tube // J. Chem. Phys.. 1995. V. 102. № 21. P. 8378–8384.
- 18. Brzozowski J., Erman P., Lyyra M. Precision estimates of the predissociation rates of the OH $A^2\Sigma$ state (v \leq 2) // Physica scripta. 1978. V. 17. P. 507-511.
- Cuppit L.T., Takacs G.A., Glass G.P. Reaction of hydrogen atoms and O₂('Δ_g) // Int. J. Chem. Kinet. 1982. V. 14. № 5. P. 487–497.
- Морозов И.И., Темчин С.М. Кинетика реакций синглетного кислорода в газовой фазе // Химия плазмы. Сб. статей под ред. Смирнова Б.М. Вып. 16. М.: Энергоатомиздат. 1990. С. 39-67.
- 21. Borrell P., Richards D.S. Quenching of singlet molecular oxygen $O_2(a'\Delta_g)$ by H_2 , D_2 , HCl and HBr // J. Chem. Soc. Faraday Trans. II. 1989. V. 85. P. 1401-1411.
- 22. Sander S.P. et al. Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation Number 17. JPL Publication 10–6. Jet propulsion Laboratory. Passadena. 2011. http://jpldataeval.jpl.nasa.gov/
- Басевич В.Я., Веденеев В.И. Константа скорости реакции H+O₂(а'∆_g)=OH+O // Хим. физика. 1985. Т. 4. С. 1102-1106.
- 24. Choo K.W., Leu M.T. Rate constants for the quenching of metastable $O_2({}^{1}\Sigma_{g}^{+})$ molecules // Intern. J. Chem. Kinetics. 1985. V. 17. No 11. P. 1155-1167.

- 25. Borrell P., Borrell P.M., Pedley M.D., Grant K.R. High temperature studies of singlet oxygen $O_2(a'\Delta_g)$ and $O_2(b^1\Sigma_g^+)$ with a combined discharge flow / shock tube method // Proc. Roy. Soc. London. A. 1979. V. 367. P. 395–410.
- 26. Clark I.D., Wayne R.P. The reactions of $O_2(^{1}\Delta g)$ with atomic nitrogen and with atomic oxygen // Chem. Phys. Lett. 1969. V. 3. No. 6. P. 405-407.
- 27. Baulch D.L. et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II // J. Phys. Chem. Ref. Data. 1984. V. 13. № 4 P. 1259-1380.
- 28. Gordiets B.F. et al. Kinetic model of a low-pressure N_2 - O_2 flowing glow discharge // IEEE Transactions on Plasma Science. 1995. V. 23. P. 750–768.
- 29. Gauthier M., Snelling D.R. Mechanism of singlet molecular oxygen formation from photolysis of ozone at 2537Å // J. Chem. Phys.. 1971. V. 54. № 10. P. 4317–4325.
- 30. Lee L.C., Slanger T.G. Observations on $O({}^{1}D \rightarrow {}^{3}P)$ and $O_2(b{}^{1}\Sigma_{g}^{+}\rightarrow X{}^{3}\Sigma_{g}^{-})$ following O_2 photodissociation // J. Chem. Phys. 1978. V. 69. No 9. P. 4053-4060.
- 31. Fairchild P.W., Smith G.P., Crosley D.R. Collisional quenching of A²Σ⁺, OH at elevated temperatures // J. Chem. Phys. 1983. V. 79. № 4. P. 1795–1807.
- 32. Королева Е.А., Хворостовская Л.Е. Коэффициенты дезактивации метастабильных атомов O(¹D) и O(¹S) в тлеющем разряде в кислороде // Оптика и спектроскопия. 1973. Т. 35. № 1. С. 19-23.
- 33. Skrebkov O.V., Karkach S.P., Vasil'ev V.M., Smirnov A.L. Hydrogen-oxygen reactions behind shock waves assisted by $OH^*(^{2}\Sigma^{+})$ formation // Chem. Phys. Let. 2003. V. 375. P. 413-418.
- Lilenfeld H.V., Carr P.A.G., ad Hovis F.E. Energy pooling reactions in the oxygen iodine system // J. Chem. Phys. 1984. V. 81. No. 12. Pt. 1. P. 5730–5736.
- 35. De More W.B., Sander S.P., Golden D.M. et al. Chemical kinetics and photochemical data for use I stratospheric modeling. Evaluation number 12. JPL Publication 97-4. California institute of technology, Pasadena, CA 1997.
- 36. Derwent R.G. and Thrush B.A. Measurements on $O_2^{\ 1}\Delta_g$ and $O_2^{\ 1}\Sigma_g^{\ +}$ in discharge flow systems // Trans. Faraday Soc., 1971. V. 67. P. 2036-2043.
- 37. Findlay F.D., and Snelling D.R. Temperature Dependence of the Rate Constant for the Reaction $O_2({}^{1}\Delta_g)+O_3 \rightarrow 2O_2+O$ // J. Chem. Phys. 1971. V. 54. No. 6. P. 2750–2755.
- 38. Becker K.H., Groth W., and. Schurath U. Reactions of $O_2(^{1}\Delta g)$ with ozone // Chem. Phys. Lett. 1972. V. 14. No. 4. P. 489-492.
- 39. Keyser L.F., Choo K.Y. and Leu M.T. Yelds of $O_2(b^1\Sigma_g^+)$ from reactions of HO₂ // Int. J. Chem. Kinetics. 1985. V.17. No. 11. P. 1169–1185.
- 40. Schofield K. Rate constants for the gaseous interactions of $O(2^1D_2)$ and $O(2^1S_0)$ a critical evaluation. // J. Photochem. 1978. V. 9. P. 55-68.
- Collins R.J., Husain D. and Donovan R.J. Kinetic and spectroscopic studies of O₂(a¹Δ_g) by time-resolved absorption spectroscopy in the vacuum ultra-violet // J. Chem. Soc., Faraday Trans. 2. 1973. V. 69 P. 145-157.

Статья поступила в редакцию 20 февраля 2013 г.