УДК 533.6.011.8

ТЕПЛООБМЕН В НЕДОРАСШИРЕННЫХ НЕРАВНОВЕСНЫХ СТРУЯХ УГЛЕКИСЛОГО ГАЗА: ЭКСПЕРИМЕНТ НА ИНДУКЦИОННОМ ПЛАЗМОТРОНЕ И ЭКСТРАПОЛЯЦИЯ НА УСЛОВИЯ ВХОДА В АТМОСФЕРУ МАРСА

Колесников А.Ф.¹, Гордеев А.Н.¹, Сахаров В.И.²

¹ Институт проблем механики им. А.Ю. Ишлинского Российской академии наук, Россия, Москва, 119526, проспект Вернадского, д.101-1 ² Институт механики МГУ им. М.В. Ломоносова, Москва

> koles@ipmnet.ru vl.sakharov@mail.ru

Аннотация

Представлены результаты экспериментального и численного исследования конвективного теплообмена на цилиндрической модели с плоским торцом радиуса 10 мм в недорасширенных струях диссоциированного углекислого газа при рабочих параметрах 100-киловаттного ВЧ-плазмотрона. На основе концепции локального моделирования теплообмена параметры сверхзвукового обтекания модели в плазмотроне пересчитаны на условия входа сферы в атмосферу Марса с гиперзвуковой скоростью. Определены характеристики теплообмена, которые подобны в эксперименте и полете.

HEAT TRANSFER IN UNDER-EXPANDED NONEQUILIBRIUM CARBON DIOXIDE JETS: EXPERIMENT ON RF-PLASMATRON AND EXTRAPOLATION TO MARS ENTRY CONDITIONS

Kolesnikov A.F.¹, Gordeev A.N.¹, Sakharov V.I.²

¹ Ishlinskyi Institute for Problems in Mechanics Russian Academy of Sciences (IPMech RAS), Russia, Moscow, 119526

² Institute of Mechanics, Moscow State University, Russia, Moscow, 119899

Results of experimental and numerical study of convective heat transfer to a 10 mm radius water-cooled cylindrical model with a flat face in supersonic under-expanded dissociated carbon dioxide jets at 100-kW RF-plasmatron IPG-4 test conditions are presented. Free stream parameters in plasmatron jets are recalculated to sphere entry conditions in Martian atmosphere and CFD modeling nonequilibrium flow fields and heat transfer for IPG-4 tests and hypersonic flight are performed. Characteristics of heat transfer, which are similar in supersonic plasmatron tests and hypersonic flight, are found.

1. Введение

Теплообмен с поверхностью в сверхзвуковых струях индукционного плазмотрона изучался экспериментально и численно в ряде работ [1–4]. Тем не менее, для каждой действующей высокоэнтальпийной установки эта тема остается актуальной по следующим основным причинам. Во-первых, измерения и расчеты тепловых потоков и давлений торможения составляют неотъемлемую часть диагностики течений химически активной плазмы, в частности, восстановления энтальпии. Во-вторых, экспериментально-теоретические исследования теплообмена важны для валидации компьютерных кодов, предназначенных для расчетов высокоэнтальпийных неравновесных течений химически реагирующих газов и плазмы [1–3]. В-третьих, эксперименты и расчеты для условий экспериментов необходимы

при определении коэффициентов рекомбинации атомов на поверхности материалов. Наконец, в-четвертых, такие данные требуются для решения вопросов моделирования теплообмена и переноса лабораторных данных на условия натурного полета [5, 6].

Индукционные ВЧ-плазмотроны являются наиболее удобным и гибким средством для исследования каталитических свойств тепловой защиты многоразового использования и для её циклических ресурсных испытаний. Использование чистых плазменных струй индукционных плазмотронов позволяет наиболее полно и точно моделировать термохимическое воздействие плазмы ударного слоя на поверхность материалов тепловой защиты в окрестности носового затупления спускаемых аппаратов. При выполнении условий локального моделирования в дозвуковых высокоэнтальпийных потоках при $R_m << R_w$, где R_m – радиус модели, R_w – радиус носового затупления тела, воспроизводятся полная энталпия, давление торможения, толщина пограничного слоя, распределения температуры и концентрации химических компонентов поперёк пограничного слоя, а, следовательно, и тепловой поток, и температура поверхности исследуемого материала [5, 6].

ВЧ-плазмотрон ВГУ-4 мощностью 100 кВт – многофункциональная установка для исследований теплообмена и термохимических испытаний теплозащитных материалов [7]. Установка может работать на воздухе и других газах (азот, кислород, углекислый газ, аргон) в режимах до- и сверхзвукового истечения плазмы из разрядного канала. Выбор того или другого режима зависит от конкретной задачи эксперимента. Например, для определения каталитических характеристик покрытий оптимален дозвуковой режим, в котором набегающий на модель струйный поток химически равновесный, а пограничный слой близок к замороженному [8]. С другой стороны, максимальные плотности теплового потока в критической точке водоохлаждаемой модели достигнуты в сверхзвуковых потоках воздушной плазмы [4, 9]. При выборе режима испытаний образцов материалов в осесимметричной конфигурации обтекания модели необходимо руководствоваться критерием моделирования [5, 6], включающем отношение эффективных радиусов модели и натурного тела.

Сверхзвуковой режим работы плазмотрона существенно сложнее для исследований теплообмена, чем дозвуковой, поскольку при сверхзвуковом истечении плазмы из звукового сопла имеют место сложная ударно-волновая структура недорасширенной струи и неравновесность потока [1–3]. Тем не менее, сверхзвуковые недорасширенные струи низкотемпературной плазмы позволяют достигать максимальных тепловых потоков, что представляет наибольший интерес, но в то же время имеют и наибольшую сложность с точки зрения численного моделирования газодинамики и термохимии таких течений.

Для ряда сверхзвуковых режимов плазмотрона ВГУ–4 задачи численного моделирования решались [1–3] в различных постановках, в том числе путем сквозного расчета течения термически и химически неравновесной воздушной плазмы в разрядном канале и в пространстве, ограниченном стенками барокамеры и поверхностью модели [2]. В результате получены согласующиеся экспериментальные и расчетные данные по тепловым потокам и давлению в точке торможения на цилиндрической модели с плоским носком в первой сверхзвуковой зоне недорасширенной струи диссоциированного воздуха [1–3].

В настоящей работе проведено экспериментальное и численное исследование теплообмена в точке торможения на цилиндрической модели с плоским носком радиуса 10 мм в первой сверхзвуковой зоне недорасширенной струи диссоциированного углекислого газа. Получены согласующиеся экспериментальные и расчетные данные по тепловым потокам к охлаждаемой медной поверхности и давлениям торможения.

На основе теории локального моделирования термохимического взаимодействия высокоэнтальпийных потоков с неразрушаемой поверхностью [5, 6] для трех режимов сверхзвукового обтекания модели выполнен пересчет параметров на оси струи для условий обтекания сферы гиперзвуковым потоком углекислого газа. Для условий эксперимента и соответствующих параметров входа в атмосферу Марса рассчитаны и проанализированы зависимости тепловых потоков от эффективного коэффициента каталитической рекомбинации атомов О и молекул СО для холодной и равновесно излучающей стенок. Установлено, что нормализованные тепловые потоки для условий экспериментов на плазмотроне и соответствующих условий обтекания сферы гиперзвуковым потоком углекислого газа подобны.

2. Эксперимент по теплообмену на ВЧ-плазмотроне

Эксперименты по теплообмену в недорасширенных струях диссоциированного газа проводились на 100-киловаттном ВЧ-плазмотроне ВГУ–4. Использовался насадок на разрядный канал плазмотрона – звуковое коническое сопло с выходным сечением 30 мм. После поджига разряда при соответствующей откачке газа из барокамеры в последней формировалась недорасширенная высокоэнтальпийная струя диссоциированной и частично ионизованной смеси углекислого газа, истекающая из звукового сопла. Геометрия и физические параметры струи определялись расходом углекислого газа через разрядный канал, мощностью генератора по анодному питанию и давлением в затопленном пространстве барокамеры. После выхода установки на заданные режимные параметры в струю с помощью координатного устройства вводилась цилиндрическая водоохлаждаемая модель с плоским носком радиуса 10 мм с установленным в ней проточным калориметром для измерения теплового потока в критической точке или датчиком давления торможения.

Плотность стационарного теплового потока в центральной части плоской лицевой поверхности модели определяется по расходу воды через калориметр, площади тепловоспринимающей поверхности калориметра и разности температур на входе и выходе из калориметра. Измеренные значения разности температур воды в калориметре регистрировались программно на компьютере через 1 с. Время выхода калориметра на стационарное значение теплового потока составляет 10 с. Перед началом измерений плоская полированная тепловоспринимающая поверхность медного калориметра диаметром 11.8 мм тренировалась в потоке плазмы CO_2 в течение нескольких минут. Точность измерений теплового потока к охлаждаемой поверхности меди в точке торможения потока составляет ± 5%. Для измерения давления на поверхности модели в точке торможения потока использовалась та же водоохлаждаемая модель, в которую вместо калориметра устанавливался датчик давления.

При неизменных параметрах набегающего потока модель с помощью координатного устройства перемещалась вдоль оси струи так, чтобы обтекание модели потоком плазмы CO_2 оставалось осесимметричным. Для проверки воспроизводимости измерений последние проводились при прямом и обратном ходах модели. В эксперименте получены распределения вдоль оси струи плотности тепловых потоков q(x) к водоохлаждаемой медной поверхности калориметра, установленного в водоохлаждаемую медную модель, и давления $P_{st}(x)$ на поверхности модели в точке торможения потока при массовом расходе углекислого газа G = 2.4, 3 и 4.6 г/с, мощности генератора по анодному питанию $N_a = 45$, 53 и 64 кВт, давлению в затопленном пространстве барокамеры $p_{\infty} = 10.4$ гПа.

3. Численное моделирование

Численное моделирование течений в разрядном канале плазмотрона с индукционным нагревом газов и в истекающих недорасширенных струях диссоцированного и частично ионизованного углекислого газа проводилось для условий работы установки ВГУ–4. Применялась технология, основанная на комплексе программ численного интегрирования уравнений Навье – Стокса [11] и специальных программ-генераторов, взаимодействующих с базами данных по термодинамическим и переносным свойствам индивидуальных газовых веществ [12].

Система нестационарных уравнений Навье – Стокса решалась численно на структурированной криволинейной сетке методом конечного объема. Система конечно-разностных уравнений состояла из численных аналогов уравнений сохранения для четырехугольных ячеек, покрывающих расчетную область, и разностных аппроксимаций граничных условий. Методом конечного объема определялось приближенное решение – значения физических переменных \mathbf{Z}_{ij} (давления, температуры, вектора скорости, концентраций компонентов) в центре каждой ячейки (x_{ij}, y_{ij}) и в центре каждой стороны ячейки (x_{wi}, y_{wi}) , примыкающей к твердой стенке. Невязкие численные потоки \mathbf{F}_{G}^{inv} через стороны ячейки вычислялись по результату решения задачи Римана о распаде произвольного разрыва $\mathbf{Z}_{G} = Ri(\mathbf{Z}_{G}^{L}, \mathbf{Z}_{G}^{R})$ [13], где Ri - оператор решения задачи Римана. Граничные значения $\mathbf{Z}_{G}^{L,R}$ определялись по лимитированным одномерным экстраполяционным формулам вектора \mathbf{Z} от центров ячеек к центрам сторон. Численные значения вязких потоков \mathbf{F}_{G}^{vis} через стороны ячеек определялись по дентральным и односторонним разностным формулам второго порядка точности.

Разностные уравнения решались с помощью двухслойной неявной итерационной схемы, основанной на неявной аппроксимации нестационарных уравнений Навье – Стокса. В конструкции неявного итерационного оператора использовалось расщепление Якобианов численных потоков с учетом знаков собственных значений. Приближенное обращение неявного оператора реализовывалось методом последовательной релаксации Гаусса – Зейделя в линиях с применением *LU*-разложения блочно-тридиагональных матриц при решении уравнений на каждой линии.

Использовались следующие граничные условия: во входном сечении канала задавались все необходимые параметры течения, с учетом закрутки потока. На оси канала использовались условия симметрии. Поскольку одновременно рассчитывалось течение и около цилиндрической модели, располагавшейся в барокамере плазмотрона, то в выходном сечении расчетной области ставились "неотражающие" граничные условия. На всех твердых поверхностях (стенка кварцевой трубки, торец входного участка разрядного канала, поверхности звукового сопла и цилиндрической модели) задавались нулевые значения компонент скорости и определенные значения температуры. Стенка разрядного канала полагалась некаталитической по отношению к рекомбинации атомарных компонентов диссоциированной и частично ионизованной смеси. Полная постановка задачи приведена в [1, 2].

Индуктор в расчете заменялся пятью бесконечно тонкими кольцевыми витками. При расчете высокочастотного вихревого электрического поля на основе локально одномерного приближения использовались предположения: электромагнитное поле считалось монохроматическим с заданной частотой, определяемой высокочастотным током в индукторе (частота тока в индукторе 1.76 МГц); плазма квазинейтральна; магнитная проницаемость плазмы $\mu = 1$; диэлектрическая проницаемость плазмы не зависит от электромагнитного поля и, следовательно, не зависит от координат; током смещения можно пренебречь; изменение электрического поля в осевом направлении пренебрежимо мало по сравнению с его изменением в радиальном направлении. При совместном расчете течения смеси углекислого газа и электромагнитного поля в разрядном канале плазмотрона в качестве определяющего параметра задавалась также мощность N_{pl} , вкладываемая в разряд, а соответствующий ток в индукторе определялся в процессе решения. Значение N_{pl} , в свою очередь, определяющего с помощью калориметрических измерений выносимой мощности из разрядного канала плазмотрона ($N_{pl} = \kappa.n.d. * N_a$). Полная постановка электромагнитной части задачи приведена в [14].

В данной работе смесь CO_2 рассматривалась как идеальная смесь совершенных газов, в которой могут протекать химические реакции и реакции ионизации. Вращения и колебания молекул описывались моделью «жесткий ротатор – гармонический осциллятор» с больцмановским распределением по энергетическим уровням. Предполагалось, что все компоненты находятся в основном электронном состоянии, и вращательная и колебательная температуры молекул равны поступательной температуре. В расчетах учитывались 11 нейтральных и ионизованных компонентов смеси CO_2 : O, C, O₂, CO, CO₂, O⁺, C⁺, CO⁺, O₂⁺, C₂ и е⁻. Термодинамические и термохимические данные для рассматриваемых компонентов брались из [12]. Числовые значения констант химических реакций, протекающих в высокотемпературной смеси CO₂, заимствованы из [15–18].

Транспортная модель необходима для вычисления вязких потоков массы компонентов, импульса и энергии в газе. Молярные диффузионные потоки \mathbf{K}_i определялись из соотношений Стефана – Максвелла для частично ионизованной смеси газа [19] с использованием условий квазинейтральности смеси, отсутствия тока проводимости и диффузионного потока массы. Термодиффузией пренебрегалось. Для вычисления коэффициентов вязкости и теплопроводности газовой смеси использовались приближенные формулы Уилке – Васильевой [20]. Проводимость плазмы определялась из соотношения Стефана – Максвелла для электронной компоненты в пренебрежении скоростью диффузии тяжелых частиц и градиентов параметров в окружном направлении [2].

Бинарные коэффициенты диффузии вычислялись по двухпараметрической интерполяционной формуле [21] через сечения упругих столкновений диффузионного типа нейтральных атомов и молекул между собой и с ионами. Эта формула построена на основе значений сечений при низкой ($T_1 = 300$ K) и высокой ($T_2 = 20000$ K) температурах. Взаимодействие заряженных частиц описывается в приближении парных столкновений с использованием экранированного кулоновского потенциала. Для расчета интегралов столкновений этого типа используются аппроксимационные зависимости, приведенные в [22]. Числа Шмидта для всех компонентов, необходимые при расчете коэффициентов вязкости и теплопроводности, вычислялись в предположении, что отношение значений всех сечений столкновений «вязкостного» типа к соответствующим сечениям «диффузионного» типа равно 1.1.

4. Сравнение экспериментальных и расчетных данных по теплообмену

Систематические измерения распределений давления и плотности тепловых потоков в точке торможения потока на медной водоохлаждаемой модели выполнены для значений расхода углекислого газа 2.4, 3.0 и 4.6 г/с и мощности ВЧ-генератора по анодному питанию 45, 53 и 64 кВт. Результаты этих измерений приведены на рис. 1 - 6 в сравнении с расчетными распределениями для поверхности с конечной каталитической активностью при значениях эффективного коэффициента гетерогенной рекомбинации атомов кислорода, углерода и окиси углерода $\gamma = \gamma_{\rm C} = \gamma_{\rm CO} = 0.3$.

Давление торможения на модели с плоским торцом радиуса 10 мм, обтекаемой сверхзвуковой недорасширенной струей диссоциированного углекислого газа, истекающей из звукового сопла с диаметром выходного сечения 30 мм, при различных мощностях и расходах углекислого газа представлено на рис. 1–3. Согласие расчетных и экспериментальных данных удовлетворительное в пределах первой сверхзвуковой зоны.

Экспериментальные зависимости теплового потока к медному калориметру, установленному в медной водоохлаждаемой модели с плоским торцом радиуса 10 мм, а также расчетные зависимости теплового потока от расстояния между выходным сечением сопла и моделью представлены на рис. 4–6. Согласие расчетных и экспериментальных данных удовлетворительное в пределах первой сверхзвуковой «бочки», в которой реализованы тепловые потоки в диапазоне 160 ÷ 640 Вт/см².

Следует отметить, что имеются большие расхождения между экспериментальными и расчетными значениями q и P_{st} при расположении модели в струе за первой сверхзвуковой "бочкой", когда перед передним торцевым затуплением возникает отрывное течение. Это обстоятельство отмечалось и ранее в работе [2], где изучалось истечение воздушных струй из разрядного канала плазмотрона и обтекание ими моделей. Объяснение этого факта связано с пространственным нестационарным характером течения перед торцевым затуплением модели, когда она расположена за диском Маха.

Рис. 1. Зависимость давления торможения от расстояния между соплом и моделью при расходе углекислого газа 2.4 г/с и различных мощностях ВЧ-генератора по анодному питанию: 45 (1 и 2), 53 (3 и 4) и 64 (5 и 6) кВт; светлые точки – эксперимент, черные точки – расчет

Рис. 2. Зависимость давления торможения от расстояния между соплом и моделью при расходе углекислого газа 3.0 г/с и различных мощностях ВЧ-генератора по анодному питанию; светлые точки – эксперимент, черные точки – расчет; обозначения на рис.1

Рис. 3. Зависимость давления торможения от расстояния между соплом и моделью при расходе углекислого газа 4.6 г/с и различных мощностях ВЧ-генератора по анодному питанию; светлые точки – эксперимент, черные точки – расчет; обозначения на рис.1

Рис. 4. Экспериментальные и расчётные зависимости теплового потока от расстояния от выходного сечения сопла до модели при расходе углекислого газа 2.4 г/с и различных мощностях ВЧ-генератора по анодному питанию: 45 (1 и 2), 53 (3 и 4) и 64 (5 и 6) кВт; светлые точки – эксперимент, черные точки – расчет

Рис. 5. Экспериментальные и расчётные зависимости теплового потока от расстояния от выходного сечения сопла до модели при расходе углекислого газа 3.0 г/с и различных мощностях ВЧ-генератора по анодному питанию; светлые точки – эксперимент, черные точки – расчет; обозначения как на рис.4

Рис. 6. Экспериментальные и расчётные зависимости теплового потока от расстояния от выходного сечения сопла до модели при расходе углекислого газа 4.6 г/с и различных мощностях ВЧ-генератора по анодному питанию; светлые точки – эксперимент, черные точки – расчет; обозначения как на рис.4

5. Экстраполяция на условия гиперзвукового обтекания сферы

Хотя исследованные выше режимы теплообмена цилиндрической модели с плоским носком радиуса 10 мм со сверхзвуковыми недорасширенными струями диссоциированного углекислого газа отличаются определенным своеобразием, возникает вопрос: можно ли им поставить в соответствие параметры движения затупленного тела с гиперзвуковой скоростью в атмосфере Марса? Для анализа этого вопроса, учитывая, что углекислый газ по теплофизическим свойствам близок к смеси 97 % СО₂ и 3 % N₂, образующей атмосферу Марса, воспользуемся условиями локального моделирования теплообмена в критической точке, сформулированными в [5, 6] на основе теории ламинарного диссоциированного пограничного слоя. Эти условия представляют собой равенства полных энтальпий, давлений торможения и градиентов скорости на внешних границах пограничных слоев на теле и модели:

$$H_{\infty} = \frac{V_{\infty}^2}{2} = H_{se0} \tag{1}$$

$$p_{w0} = \rho_{\infty} V_{\infty}^2 = p_{m0} \tag{2}$$

$$\beta_{e0} = \left(\frac{\partial U_s}{\partial r}\right)_{e0} \tag{3}$$

В формулах (1)–(3) H – полная энтальпия; p – давление; ρ – плотность; V – продольная составляющая скорости; U – поперечная составляющая скорости; r – координата вдоль поверхности модели; индексы ∞ и s относятся к набегающему гиперзвуковому потоку и сверхзвуковой струе; e – к внешней границе пограничного слоя; 0 – к линии торможения; w и m – к поверхности тела и модели.

В случае гиперзвукового обтекания затупленного тела равномерным потоком при больших числах Re в приближении тонкого ударного слоя последнее равенство может быть конкретизировано в виде [5]:

$$\left(\frac{8}{3}\frac{\rho_{\infty}}{\rho_{sh}}\right)^{1/2}\frac{V_{\infty}}{R_{w}} = \left(\frac{\partial U_{s}}{\partial r}\right)_{e0},\tag{4}$$

где ρ_{sh} – плотность газа за ударной волной в гиперзвуковом потоке.

Условий (1), (2) и (4) достаточно, чтобы параметры сверхзвукового обтекания модели неравномерным потоком пересчитать на условия обтекания сферы радиуса R_w^0 гиперзвуковым равномерным потоком:

$$V_{\infty} = \sqrt{2H_{se0}} \tag{5}$$

$$\rho_{\infty} = \frac{p_{m0}}{V_{\infty}^2} \tag{6}$$

$$R_{w}^{0} = \left(\frac{8}{3}\frac{\rho_{\infty}}{\rho_{sh}}\right)^{1/2} V_{\infty} \left(\frac{\partial U_{s}}{\partial r}\right)_{e0}^{-1}$$
(7)

В сверхзвуковой струе параметры на внешней границе пограничного слоя определялись по границе линейных участков рассчитанных профилей энтальпии и градиента скорости. Параметры сверхзвукового обтекания цилиндрической водоохлаждаемой (T_w =300 K) модели с плоским торцом радиуса R_m =10 мм, расположенной на расстоянии Z=30 мм от среза разрядного канала приведены в табл. 1 для трех экспериментальных режимов ВЧплазмотрона ВГУ–4 (индекс S относится к параметрам на оси струи непосредственно перед скачком уплотнения).

№ режима	<i>G</i> , г/с	<i>N_{ap}</i> , кВт	<i>V_S</i> , м/с	<i>H_{se0}</i> , МДж/кг	<i>T_s</i> , K	$ ho_S$, КГ/м 3	$p_{m0}, \mathrm{H/M}^2$	$(dU_{S}/dr)_{e0} c^{-1}$
P1	2.4	45	2764.71	21.94	3025	0.00045	3163	0.729×10^{5}
P2	3.6	52	2920.0	24.00	3000	0.00046	3720	0.930×10 ⁵
P3	4.6	64	3000.0	26.67	2950	0.00046	4474	1.158×10 ⁵

Таблица 1

Вычисленные для режимов P1–P3 по формулам (5)–(7) параметры гиперзвукового обтекания сферы углекислым газом в режимах E1–E3 приведены в табл. 2. При вычислении R_w^0 по формуле (7) отношение плотностей перед и за ударной волной в гиперзвуковом потоке принималось равным $\rho_{\infty}/\rho_{sh} = 0.08$.

Таблица 2

№ режима	H_{∞} , МДж/кг	<i>V</i> ∞, м/с	$ ho_\infty$, кг/м 3	T_{∞}, \mathbf{K}	R_{w}^{0} , см
E1	21.94	6624.2	$0.72 \cdot 10^{-4}$	140	4.2
E2	24.00	6928.2	$0.775 \cdot 10^{-4}$	140	3.4
E3	26.67	7303.0	$0.839 \cdot 10^{-4}$	140	2.9

Для параметров, приведенных в табл. 2, численно решалась задача обтекания гиперзвуковым потоком углекислого газа сферы с холодной ($T_w = 300$ K) абсолютно каталитической поверхностью в рамках уравнений Навье – Стокса с использованием того же численного метода и тех же кинетических, диффузионных и переносных моделей, которые применялись при моделировании течений в разрядном канале плазмотрона и при обтекании моделей недорасширеными струями. По этим решениям вычислялись плотности тепловых потоков в точке торможения, которые сравнивались с рассчитанными тепловыми потоками к холодной абсолютно каталитической поверхности модели в трех сверхзвуковых режимах обтекания диссоциированным углекислым газом P1–P3. Различие в тепловых потоках к абсолютно каталитической стенке достигает 30%, что существенно выше, чем при моделировании теплообмена на сфере радиуса ~ 1 м в дозвуковых потоках диссоциированного азота и воздуха [23, 24, 6].

Причина такого различия заключается в использовании равенства (7), полученного в рамках теорий пограничного слоя [5] и тонкого ударного слоя [25], для гиперзвуковых течений при малых числах Re, когда обтекание происходит в режиме слившегося вязкого ударного слоя. В этом случае в формулу для градиента скорости нужно вводить поправки на малые числа Re, как это предлагалось в [26]. Такие поправки могут быть найдены из численных решений задачи обтекания сферы гиперзвуковым потоком углекислого газа в некотором диапазоне радиуса сферы, что предполагает некоторый дополнительный объем вычислений.

В связи с этим обстоятельством предлагается заменить условие (7) на требование равенства тепловых потоков к холодной ($T_w = 300 \text{ K}$) абсолютно каталитической поверхности в критической точке тела и модели

$$q_{wcat} = q_{mcat} \tag{4.8}$$

Радиус сферы R_w с идеально каталитической поверхностью может быть определен расчетным путем из этого условия, а начальное приближение R_w^0 можно вычислить по формуле (7). Так рассчитанные радиусы трех сфер для трех режимов гиперзвукового обтекания E1–E3 имеют значения $R_w = 0.052$, 0.041 и 0.039 м.

С использованием уточненных значений радиуса сферы рассчитаны тепловые потоки в точке торможения на сфере в гипотетических режимах E1–E3, а также тепловые потоки к

критической точке цилиндрической модели в экспериментальных режимах P1–P3 во всем диапазоне эффективного коэффициента рекомбинации $0 \le \gamma \le 1$ для холодной стенки. При этом считалось, что диффузионные потоки компонентов CO, O и C соответственно пропорциональны массовым концентрациям этих компонентов и $\gamma_{CO} = \gamma_O = \gamma_C = \gamma [27]$.

Из зависимостей $q_w(\gamma)$, приведеных в табл. 3–5, видно, что плотности тепловых потоков к модели в струе плазмотрона и к сфере при гиперзвуковом обтекании хорошо согласуются для высококаталитических поверхностей ($0.2 \le \gamma \le 1$), но с уменьшением γ разница в тепловых потоках увеличивается. Тепловые потоки к некаталитической поверхности различаются почти в два раза, что существенно больше, чем отмечалось в случае моделирования теплообмена в дозвуковых потоках азота [23] и воздуха [24, 6] при условии $R_m \square R_w$. Основная причина различий конвективных потоков в случае некаталитической стенки – разница температур на внешних границах пограничных слоев на сфере и модели. При обтекании сферы гиперзвуковым потоком углекислого газа температура T_e существенно выше, чем при обтекании модели сверхзвуковой струей в плазмотроне.

Τ	аблица	3	
	,		

γ	$q_w({\rm Bt/cm}^2),$ сфера, $R_w = 5.2$ см	q_W^*	$q_w(Bt/cm^2)$, модель в плазмотроне, Z=30 мм	q_W^*
1.	307.0	1.0	302.0	1.0
0.7	305.7	0.987	299.72	0.989
0.5	304.17	0.972	296.21	0.972
0.3	300.0	0.93	288.8	0.936
0.2	296.7	0.898	280.0	0.893
0.1	286.0	0.792	259.0	0.79
0.05	270.0	0.634	228.0	0.638
0.03	257.32	0.508	202.06	0.512
0.01	230.7	0.245	147.5	0.245
0.005	220.0	0.139	125.2	0.136
0.003	215.28	0.0919	_	_
0.001	209.4	0.0336	103.8	0.0318
0	206.0	0.	97.3	0.

Таблица 4

γ	$q_w({\rm Bt/cm}^2),$ сфера, $R_w = 4.1$ см	q_W^*	$q_{w}(\text{Bt/cm}^{2})$, модель в плазмотроне, Z=30 мм	q_W^*
1.	417.71	1.0	417.02	1.0
0.7	416.1	0.9872	413.53	0.9879
0.5	414.0	0.9706	409.17	0.9726
0.3	409.31	0.933	398.93	0.909
0.2	403.89	0.890	387.11	0.896
0.1	390.0	0.780	356.49	0.789
0.05	370.08	0.622	311.14	0.631
0.03	353.01	0.486	271.71	0.4946
0.01	320.63	0.2294	195.99	0.232
0.005	307.77	0.1273	166.25	0.1297
0.003	301.76	0.0796	152.55	0.0795
0.001	295.22	0.0277	137.79	0.0282

0	201 72	0	120.7	0
0	291.73	0.	129.7	0.

γ	$q_w({ m Bt/cm}^2),$ сфера, $R_w = 3.9$ см	q_W^*	<i>q</i> _w (Вт/см ²), модель в плазмотроне, Z=30 мм	q_W^*
1.	533.1	1.0	531.74	1.0
0.7	530.9	0.9869	527.57	0.989
0.5	528.07	0.97	521.9	0.9736
0.3	521.8	0.9319	509.6	0.94
0.2	514.6	0.889	494.6	0.90
0.1	495.9	0.778	455.4	0.795
0.05	469.0	0.617	397.8	0.64
0.03	446.11	0.48	346.3	0.503
0.01	403.2	0.224	245.9	0.234
0.005	386.3	0.123	206.57	0.129
0.003	378.66	0.0774	_	_
0.001	370.2	0.0269	168.9	0.0278
0	365.7	0.	158.5	0.

Таблица 5

Изложенный выше расчетный подход использован для анализа возможности моделирования тепловых потоков к критической точке на равновесно излучающей стенке (степень черноты поверхности $\varepsilon = 0.85$) с граничным условием для теплового потока

$$q_{m,w} = \varepsilon \sigma T_w^4 \tag{4.9}$$

Плотности тепловых потоков к равновесно излучающим стенкам в критических точках цилиндрической модели с плоским носком радиуса 0.01 м и сфер соответствующего радиуса в сверхзвуковом и гиперзвуковом потоках углекислого газа, рассчитанные для режимов P1–P3 и E1–E3, приведены в таблицах 6–8.

γ	$q_w({ m Bt/cm}^2),$ сфера, $R_w = 5.2$ см	q_W^*	<i>q</i> _w (Вт/см ²), модель в плазмотроне, Z=30 мм	q_W^*
1.	256.7	1.0	255.82	1.0
0.7	252.59	0.958	249.83	0.968
0.5	248.12	0.913	242.43	0.928
0.3	239.54	0.826	227.00	0.846
0.2	230.41	0.734	210.93	0.760
0.1	212.02	0.548	177.50	0.582
0.05	193.6	0.362	142.54	0.396
0.03	182.38	0.249	120.32	0.278
0.01	167.42	0.0973	89.039	0.111
0.005	162.79	0.0505	79.33	0.059
0.001	158.82	0.0103	70.683	0.0129
0	157.8	0.	68.26	0.

Таблица б

В случае равновесно излучающей стенки рассчитанные плотности тепловых потоков к модели в струе плазмотрона и к сфере при гиперзвуковом обтекании также хорошо согла-

суются для высококаталитических поверхностей $(0.2 \le \gamma \le 1)$, но с уменьшением γ разница в тепловых потоках увеличивается.

Таблица 7

γ	$q_w({ m Bt/cm}^2),$ сфера, $R_w = 4.1$ см	q_W^*	$q_w(\text{Bt/cm}^2)$, модель в плаз- мотроне, Z=30 мм	q_W^*
1.	348.87	1.0	354.06	1.0
0.7	343.29	0.956	344.42	0.964
0.5	337.42	0.909	332.62	0.920
0.3	324.84	0.809	308.89	0.830
0.2	312.37	0.71	284.46	0.739
0.1	288.0	0.517	235.22	0.554
0.05	264.8	0.333	185.54	0.369
0.03	251.18	0.233	155.06	0.254
0.01	233.59	0.0859	114.32	0.0972
0.005	228.37	0.044	101.08	0.052
0.003	226.18	0.0271	95.84	0.0324
0.001	223.92	0.0092	90.15	0.0111
0.0001	222.88	0.00095	87.51	0.0012
0	222.76	0.	87.18	0.

Таблица 8

γ	$q_w({\rm Bt/cm}^2),$ сфера, $R_w = 3.9$ см	q_W^*	<i>q</i> _w (Вт/см ²), модель в плаз- мотроне, Z=30 мм	q_W^*
1.	445.85	1.0	443.21	1.0
0.7	443.81	0.988	431.59	0.966
0.5	434.8	0.935	417.27	0.924
0.3	411.82	0.80	388.13	0.839
0.2	394.43	0.699	357.98	0.750
0.1	360.77	0.501	295.17	0.566
0.05	333.29	0.341	230.55	0.377
0.03	315.28	0.235	190.85	0.260
0.01	292.45	0.101	137.12	0.102
0.005	285.87	0.0627	120.49	0.054
0.001	280.28	0.03	105.9	0.0112
0.0001	278.98	0.0224	102.44	0.0011
0	275.17	0.	102.06	0.

Обобщая данные таблиц 3–8, можно заключить, что условия (5), (6) и (8) обеспечивают моделирование тепловых потоков к высококаталитическим поверхностям, но на низкокаталитической поверхности модели, обтекаемой сверхзвуковым потоком диссоциированного углекислого газа, при выполнении этих условий тепловой поток будет меньше теплового потока к сфере соответствующего радиуса, обтекаемой гиперзвуковым потоком с соответствующими параметрами.

Тем не менее, есть характеристика теплообмена, которая подобна при сверхзвуковом и гиперзвуковом обтекании при указанных выше параметрах. На рис. 7–9 представлены расчетные зависимости тепловых потоков от эффективного коэффициента поверхностной рекомбинации атомов *у* в нормализованном виде [24, 6]:

$$q_{W}^{*} = \frac{q_{W} - q_{W0}}{q_{W\infty} - q_{W0}},\tag{10}$$

Рис. 7. Нормализованные тепловые потоки к холодной (а) и равновесно радиационной (б) стенкам модели и сферы в режимах P1 и E1 соответственно

Рис.8. Нормализованные тепловые потоки к холодной (а) и равновесно радиационной (б) стенкам модели и сферы в режимах P2 и E2 соответственно

Примечательно, что нормализованные расчетные тепловые потоки практически совпадают во всем диапазоне изменения γ для всех соответствующих режимов. Ранее свойство подобия тепловых потоков, нормированных на свои предельные значения, было установлено для случая моделирования теплообмена в дозвуковых потоках воздуха [24, 6] при условии $R_m << R_w$. Этот, теперь уже общий, результат сразу ведет к формуле для экстраполяции рассчитанного для условий эксперимента теплового потока q_w^e на условия гиперзвукового обтекания тела

 $q_{w}^{f} = \left(q_{w}^{e} - q_{w0}^{e}\right) \times \frac{q_{w\infty}^{f} - q_{w0}^{f}}{q_{w\infty}^{e} - q_{w0}^{e}} + q_{w0}^{f}$ (11)

Рис.9. Нормализованные тепловые потоки к холодной (а) и равновесно радиационной (б) стенкам модели и сферы в режимах РЗ и ЕЗ соответственно

В формуле (4.11) верхние индексы *е* и *f* относятся к расчетам для условий эксперимента и входа в атмосферу. Естественно, эта экстраполяция, предложенная впервые в [24], возможна, если вычислены четыре предельные значения тепловых потоков $q_{wx}^{e,f}$ и $q_{w0}^{e,f}$. Подчеркнем, что в настоящей работе все эти параметры рассчитаны для условий эксперимента на ВЧ-плазмотроне и соответствующих им режимах входа сферы с гиперзвуковой скоростью в атмосферу Марса на основе единого численного метода и единых баз данных по термодинамическим, кинетическим и переносным свойствам.

На рис. 10 представлена рассчитанная картина изолиний чисел Маха при обтекании в режиме Р2 недорасширенной струей углекислого газа модели, расположенной от среза сопла на расстоянии 30 мм, и соответствующая этому режиму картина изолиний чисел Маха течения около сферического затупления в режиме Е2. Белыми линиями показаны линии тока.

На рис. 11 даны распределения давления 11(а) и температуры 11(б) вдоль линий симметрии течений около сферы (1) и цилиндрической модели с плоским торцом (2) для режимов Е1 и Р1.

Отметим, что конвективные тепловые потоки к сферам малого радиуса в режимах гипотетического гиперзвукового обтекания E1–E3 существенно превышают тепловой поток к сфере радиуса Rw = 66 см, обтекаемой гиперзвуковым потоком углекислого газа с параметрами, соответствующими теплонапряженной точке траектории аппарата Pathfinder [28]. В то же время, радиационные тепловые потоки в критических точках сфер, обтекаемых в режимах E1–E3, будут существенно меньше конвективных, в отличие от случая, рассмотренного в [28], в силу значительно меньшего объема высокотемпературной области ударного слоя.

Заключение

В целом получено хорошее соответствие экспериментальных и расчетных данных по давлению и плотности теплового потока в недорасширенных струях диссоциированного углекислого газа в точке торможения на модели, расположенной в первой сверхзвуковой зоне перед диском Maxa. За счет изменения положения модели в недорасширенной струе

можно существенно изменять условия теплообмена. Максимальное значение теплового потока к охлаждаемой медной поверхности модели достигает 640 Bt/cm².

Рис 10. Рассчитанная картина изолиний чисел Маха и линий тока при обтекании модели на расстоянии 30 мм от среза сопла в режиме Р2 (нижний рисунок) и сферы радиусом $R_w = 4.1$ см в режиме E2 (верхний рисунок); холодная абсолютно каталитическая стенка

Рис. 11. Распределения давления (а) и температуры (б) в зависимости от расстояний от поверхности вдоль линий симметрии течений около сферы (1) и цилиндрической модели с плоским торцом (2) для режимов Е1 и Р1; холодная абсолютно каталитическая стенка

Определены параметры локального моделирования, позволяющие рассчитать параметры обтекания сферы гиперзвуковыми потоками, соответствующие условиям обтекания цилиндрической модели с плоским носком в ВЧ- плазмотроне ВГУ–4 сверхзвуковыми недорасширенными струями углекислого газа.

Установлено, что нормированные зависимости тепловых потоков в критических точках модели и сферы от эффективного коэффициента каталитической рекомбинации атомов О и молекул СО для условий эксперимента на ВЧ-плазмотроне ВГУ–4 и входа в атмосферу Марса, связанные условиями локального моделирования теплообмена, подобны.

Данная работа выполнена в рамках Программы № 25 Президиума РАН и гранта РФФИ 14-01-00738.

Литература

- 1. Афонина Н.Е., Васильевский С.А., Громов В.Г., Колесников А.Ф., Першин И.С., Сахаров В.И., Якушин М.И. Течение и теплообмен в недорасширенных струях воздуха, истекающих из звукового сопла плазмотрона // Изв. РАН, МЖГ, 2002, № 5, С. 156–168.
- 2. Сахаров В.И.Численное моделирование термически и химически неравновесных течений и теплообмена в недорасширенных струях индукционного плазмотрона // Изв. РАН, МЖГ, 2007, № 6, С. 157–168.
- 3. Гордеев А.Н., Колесников А.Ф., Сахаров В.И. Течение и теплообмен в недорасширенных струях индукционного плазмотрона // Изв. РАН, МЖГ, 2011, № 4, С. 130 142.
- 4. Гордеев А.Н., Колесников А.Ф. Экспериментальное моделирование теплообмена в ВЧплазмотроне с удлиненным секционированным разрядным каналом // Изв. РАН, МЖГ, 2010, № 3, С. 18–191.
- 5. Колесников А.Ф. Условия моделирования в дозвуковых течениях теплопередачи от высокоэнтальпийного потока к критической точке затупленного тела // Изв. РАН, МЖГ, 1993, № 1, С. 172–180.
- 6. Колесников А.Ф. Условия локального подобия термохимического взаимодействия высокоэнтальпийных потоков газов с неразрушаемой поверхностью // ТВТ, 2014, Т. 52, № 1, С. 118–125.
- Гордеев А.Н., Колесников А.Ф. Высокочастотные индукционные плазмотроны серии ВГУ. Сб. Актуальные проблемы механики: Физико-химическая механика жидкостей и газов. Москва, Наука, 2010, С. 151–177.
- 8. Колесников А.Ф., Якушин М.И. Об определении эффективных вероятностей гетерогенной рекомбинации атомов по тепловым потокам к поверхности, обтекаемой диссоциированным воздухом // Мат. Моделирование, 1989, Т. 1, № 3, С. 44–60.
- Гордеев А.Н., Колесников А.Ф. Новые режимы течения и теплообмена плазмы в высокочастотном индукционном плазмотроне ВГУ-4 // Всероссийская школа-семинар «Аэрофизика и физическая механика классических и квантовых систем» АФМ-2007. Сб. научн. трудов. Москва, ИПМех РАН, 2007, С. 130–136.
- 10. Колесников А.Ф., Гордеев А.Н., Васильевский С.А. Экспериментальное исследование теплового эффекта катализа на кварце и металлах в потоке диссоциированного углекислого газа. Москва, ИПМех РАН, Препринт № 1028,2012, 40 с.
- Afonina N.E., Gromov V.G., Sakharov V.I. HIGHTEMP technique of high temperature gas flows numerical simulations // Proc. 5th Europ. Symp. on Aerothermodyn. Spase Vehicles. Cologne, Germany, 2004, SP 563, Noordwijk, ESTEC, 2004, P. 323–328.
- 12. Термодинамические свойства индивидуальных веществ. Справочное издание. М.: Наука, 1978, Т.1, Кн. 1, 495с.; Т.1, Кн. 2, 327 с.
- 13. Годунов С.К., Забродин А.В., Иванов М.Я. и др. Численное решение многомерных задач газовой динамики. М.: Наука, 1976, 400 с.
- 14. Васильевский С.А., Колесников А.Ф. Численное моделирование течений равновесной индукционной плазмы в цилиндрическом канале плазмотрона // Изв. РАН, МЖГ, 2000, № 5, С. 164–173.

- 15. Ибрагимова Л.Б., Смехов Г.Д., Шаталов О.П. Константы скорости диссоциации двухатомных молекул в термически равновесных условиях // Изв. РАН, МЖГ, 1999, №1, С. 181–186.
- 16. Лосев С.А., Макаров В.Н., Погосбекян М.Ю. Модель физико-химической кинетики за фронтом очень сильной ударной волны в воздухе // Изв. РАН, МЖГ, 1995, №2, С. 169–182.
- 17. Park C., Howe J.T., Jaffe R.L. and Candler G.V. Review of chemical-kinetic problems of future NASA missions, II: Mars Entries // J. Thermophys and Heat Transfer, 1993, V.7, No.3, P. 385–398.
- 18. Losev S.A., Makarov V.N., Pogosbekyan M.Ju., Shatalov O.P., Nikol'sky V.S., Thermochemical nonequilibrium kinetic models in strong shock waves on air // AIAA Paper. 1990. № 1994. 13p.
- 19. Гиршфелдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей. М.: Изд-во иностр. лит., 1961. 929 с.
- 20. Reid R.C., Prausnitz J.M., Sherwood T.K. The Properties of Gases and Liquids, McGraw-Hill, N. Y.: 1977. 688 p.
- 21. Afonina N.E., Gromov V.G. Thermochemical nonequilibrium computations for a MARS express probe // Proc. 3rd Europ. Symp. Aerothermodynam. Space Vehicles, ESTEC, Noordwijk, The Netherlands, 1998, ESA SP-426, 1999, P. 179–186.
- 22. Гордеев О.А., Калинин А.П., Комов А.Л., Люстерник В.Е., Самуйлов Е.В. Обзоры по теплофизическим свойствам веществ. ТФЦ-М: ИВТАН, 1985. № 5 (55). 100 с.
- 23. Колесников А.Ф., Щелин В.С. Численный анализ точности моделирования гиперзвукового теплообмена в дозвуковых струях диссоциированного азота // Изв. АН СССР, МЖГ, 1990, №2, С. 135–143.
- 24. Kolesnikov A.F. The Concept of Local Simulation for Stagnation Point Heat Transfer in Hypersonic Flows: Applications and Validation. AIAA 2000–2515, 2000.
- 25. Лунев В.В. Гиперзвуковая аэродинамика. М.: Машиностроение, 1975, 328 с.
- 26. Колесников А.Ф., Якушин М.И. Условия моделирования конвективного теплообмена тел с гиперзвуковыми потоками на индукционных плазмотронах // ТВТ, 1988, Т. 26. № 4. С. 742–750.
- 27. Kolesnikov A.F., Pershin I.S., Vasil'evskii S.A., Yakushin M.I. Study of Quartz Surface Catalycity in Dissociated Carbon Dioxide Subsonic Flows // J. Spacecraft and Rockets, 2000, V. 37, No. 5, Pp. 573–579.
- 28. Суржиков С.Т. Радиационно-конвективный теплообмен космического аппарата сферической формы в углекислом газе // ТВТ, 2011, Т. 49, № 1, С. 92–107.

Статья поступила в Редакцию 19 ноября 2014 г.