КИНЕТИЧЕСКИЕ ПРОЦЕССЫ В ПЛАЗМЕ ТЛЕЮЩЕГО РАЗРЯДА

Д.А. Сторожев^{1,2}

¹ Институт проблем механики им. А.Ю. Ишлинского Российской академии наук, Москва, 119526, проспект Вернадского 101-1

² Московский физико-технический институт (государственный университет) г. Долгопрудный Московская область, Институтский пер. 9

Аннотация

Решается система уравнений поуровневой кинетики для расчёта заселенностей колебательных состояний молекулярного азота в плазме тлеющего разряда. Для расчёта констант скоростей реакций а также коэффициентов переноса решается кинетическое уравнение Больцмана для функции распределения электронов по энергиям.

KINETIC PROCESSES IN GLOW DISCHARGE PLASMA

D.A. Storozhev^{1,2}

¹ Institute for Problems in Mechanics after A. Yu. Ishlinskiy RAS, Moscow, Russia, 119526 ² Moscow Institute of Physics and Technology (MIPT), Moscow Region, Russia, 141700

A system of rate balance equations for the vibrational levels in glow nitrogen discharge plasma are solving. The electron Boltzmann equation is solved to obtain transport coefficients and rate coefficients.

1. ВВЕДЕНИЕ

В настоящей работе выполнен расчет заселенности колебательных состояний молекулярного азота в плазме тлеющего разряда посредством решения «кинетических» поуровневых уравнений, а также расчет коэффициентов переноса из решения кинетического уравнения Больцмана для функции распределения электронов по энергиям.

2. ПОСТАНОВКА ЗАДАЧИ РАСЧЕТА ЗАСЕЛЕННОСТИ КОЛЕБАТЕЛЬННО-ВОЗБУЖДЕННЫХ СОСТОЯНИЙ АЗОТА В ПЛАЗМЕ ТЛЕЮЩЕГО РАЗРЯДА

Кинетическая схема, используемая для описания процессов физико-химической кинетики в тлеющем разряде, включает в себя набор реакций между 47 колебательно-возбужденными уровнями основного электронного состояния молекулярного азота:

$$\mathbf{N}_2\left(X^1\Sigma_g^+, v\right), \ v = 0 \div 47 \ .$$

В рассматриваемом случае считалось, что для электронной компоненты плазмы имеет место локальное термодинамическое равновесие (ЛТР). Поэтому распределение электронов по энергиям считалось максвелловским:

$$f(u) = 2\sqrt{\frac{u}{\pi \left(kT_e\right)^3}} \exp\left(-\frac{u}{kT_e}\right), \ \Im B^{-1}$$

где u и T_e – тепловая энергия и температура электронов. Заметим, что спектр электронов близок к максвелловскому, если частота электрон-электронных столкновений значительно превышает частоту потерь энергии в неупругих столкновениях. В случае, если это условие не выполняется, и имеет место отклонение от ЛТР, что чаще всего реализуется в катодном слое, для расчета функции распределения электронов по энергиям необходимо решать кинетическое уравнение Больцмана [1, 2–3], метод решения которого будет рассмотрен ниже.

В данной работе для расчета заселенностей колебательных уровней молекул азота были выбраны следующие параметры, характерные для положительного столба тлеющего разряда:

$$p = 2$$
 Top, $E/N = 70$ Tд, $T = 500$ K,
 $T_e = 1.0$ 9B, $N_e = 2 \times 10^{10}$ cm⁻³, (1)

где p, T, N, - давление, температура и плотность азота; T_e , N_e – температура и концентрация электронов в плазме тлеющего разряда; E – напряженность электрического поля.

Колебательная кинетика молекул азота в основном электронном состоянии $N_2(X^1\Sigma_g^+,v)$ (далее для краткости используется обозначение $N_2(X,v)$) описывается в рамках поуровневой кинетики ангармонических осцилляторов, учитывающей процессы возбуждения колебаний электронным ударом (eV), а также колебательно-колебательные (VV) и колебательнопоступательные (VT) процессы энергообмена в приближении одноквантовых переходов [3]:

$$e + \mathcal{N}_2(X, n) = e + \mathcal{N}_2(X, m), \qquad (2)$$

$$N_2(X,n) + N_2(X,m) = N_2(X,n-1) + N_2(X,m+1),$$

$$N_{2}(X,n) + N_{2} = N_{2}(X,n-1) + N_{2}, \qquad (3)$$

$$\begin{aligned} \frac{\mathrm{dN}_{2}\left(X,n\right)}{\mathrm{d}t} &= n_{e} \sum_{m < n} \mathrm{N}_{2}\left(X,m\right) C_{m \to n}^{e} + \\ &+ n_{e} \sum_{m > n} \mathrm{N}_{2}\left(X,m\right) C_{m \to n}^{e} - \\ &- n_{e} \mathrm{N}_{2}\left(X,n\right) \left(\sum_{m < n} C_{n \to m}^{e} + \sum_{m > n} C_{n \to m}^{e}\right) + \\ &+ \mathrm{N}_{2}\left(X,n-1\right) \sum_{m > 0} \mathrm{N}_{2}\left(X,m\right) K_{n-1,n}^{m+1,m} + \\ &+ \mathrm{N}_{2}\left(X,n-1\right) \sum_{m} \mathrm{N}_{2}\left(X,m\right) K_{n+1,n}^{m,m+1} - \\ &- \mathrm{N}_{2}\left(X,n\right) \sum_{m} \mathrm{N}_{2}\left(X,m\right) K_{n,n-1}^{m,m+1} - \\ &- \mathrm{N}_{2}\left(X,n\right) \sum_{m} \mathrm{N}_{2}\left(X,m\right) K_{n,n-1}^{m-1,m} + \\ &+ \mathrm{N}_{2}\left(X,n-1\right) [\mathrm{N}_{2}] P_{n-1,n} + \\ &+ \mathrm{N}_{2}\left(X,n+1\right) [\mathrm{N}_{2}] P_{n+1,n} - \\ &- \mathrm{N}_{2}\left(X,n\right) [\mathrm{N}_{2}] P_{n,n-1} - \\ &- \mathrm{N}_{2}\left(X,n\right) [\mathrm{N}_{2}] P_{n,n+1}, \end{aligned}$$
(4)

где n и m – значения колебательных квантовых чисел; $[N_2]$ – концентрация молекул азота. При описании возбуждения и опустошения колебательных уровней электронным ударом учитывались первые 11 колебательных уровней азота. Константы скорости для этого процесса рассчитывались как свертка экспериментально (либо теоретически) полученных сечений возбуждения с ФРЭЭ:

$$K_{n \to m}^{e} = \sqrt{\frac{2}{\mu}} \int_{0}^{\infty} \sqrt{u} \sigma_{n \to m} f(u) du , \qquad (5)$$

где μ – приведенная масса сталкивающихся частиц; $\sigma_{n\to m}$ – сечение процесса (2). В данной работе использовалась база данных по сечениям [4], где содержатся сечения возбуждения для реакции:

$$e + N_2(X, 0) = e + N_2(X, v), v = 1 \div 10.$$

Для расчета сечений процессов возбуждения с более высоких колебательных уровней использовалась методика, описанная в работе [5]:

$$\sigma_{i \to j} \left(u \right) = \sigma_{0 \to j-i} \left(u + d \right),$$

rge $d = U_{0 \to j-i}^{nop} - U_{i \to j}^{nop}$. (6)

Константы скорости процессов девозбуждения электронным ударом рассчитывались из принципа детального равновесия:

$$g_n C^e_{n \to m} = g_m C^e_{m \to n} \exp(-\beta), \qquad (7)$$

где $\beta = W/kT_e$, $W = E_n - E_m$, g_n, g_m – статистический вес, а E_n, E_m – уровни энергии состояний *n* и *m*.

Константы скорости процессов VV и VT-релаксации рассчитывались в рамках теории SSH [6] с применением аппроксимации Кекка и Карриера [7]: • константы скорости VT-релаксации:

$$\begin{split} P_{n+1,n}(T) &= (n+1)P_{1,0}\exp\left(n\delta_{VT}\right)\exp\left(-\frac{nhc\omega_e\chi_e}{kT}\right),\\ P_{n,n+1}(T) &= P_{n+1,n}(T)\exp\left(-\frac{(\omega_e - 2\omega_e\chi_e)hc}{kT}\right) \times \\ &\times \exp\left(-\frac{2nhc\omega_e\chi_e}{kT}\right),\\ P_{0,1}(T) &= P_{1,0}(T)\exp\left(-\frac{(\omega_e - 2\omega_e\chi_e)hc}{kT}\right),\\ \delta_{VT} &= \begin{cases} \frac{4\pi}{3}\frac{\omega_e\chi_e}{\alpha}\sqrt{\frac{\mu}{2kT}} &, & \gamma_n < 20\\ 4\left[\frac{\pi(\omega_e - 2\omega_e\chi_e)}{\alpha}\sqrt{\frac{\mu}{2kT}}\right]^{2/3}, & \gamma_n \ge 20 \end{cases}\\ \gamma_n &= \frac{\pi(\omega_e - 2\omega_e\chi_e(n+1))}{\alpha}\sqrt{\frac{\mu}{kT}},\\ P_{0,1} &= 2.16 \times 10^{-12}\sqrt{T}\exp\left(-147.43T^{-1/3}\right), \text{ cm}^3/\text{c} \quad [8]; \end{split}$$

• константы скорости VV-обмена:

$$\begin{split} K_{n+1,n}^{m,m+1} &= (m+1)(n+1) K_{1,0}^{0,1} \exp\left(-\delta_{VV} |n-m|\right) \times \\ &\times \left[\frac{3}{2} - \frac{1}{2} \exp\left(-\delta_{VV} |n-m|\right)\right] \exp\left(|n-m|\frac{hc\omega_e \chi_e}{kT}\right), \\ K_{n,n+1}^{m+1,m} &= K_{n+1,n}^{m,m+1} \exp\left(\frac{2(n-m)hc\omega_e \chi_e}{kT}\right), \\ \delta_{VV} &= \frac{4\pi}{3} \frac{\omega_e \chi_e}{\alpha} \sqrt{\frac{\mu}{2kT}} \\ K_{1,0}^{0,1} &\approx 2.87 \times 10^{-17} T^{3/2}, \ \mathrm{cm}^3/\mathrm{c} \ [8], \\ \alpha &= 4.0 \times 10^8, \ \mathrm{cm}^{-1} \ [9]. \end{split}$$

На рис. 1 приведены результаты расчетов заселенностей колебательных уровней молекул азота и сравнение их с результатами расчетов в работе [12].

На рис.1 также показаны больцмановское и триноровское распределения при $T_v = 5000 \text{ K}$, полученной экспериментально по заселенностям первых двух уровней в работе [12].

Доля колебательно возбужденных молекул азота в данном случае рассчитывалась по формуле

$$\eta = \frac{\sum\limits_{\nu=1}^{47} \mathrm{N}_2 \left(X^1 \Sigma_g^+, \nu \right)}{N} \, . \label{eq:eq:expansion}$$

Для выбранных параметров разряда (1), доля колебательно возбужденных молекул составляет $\eta \approx 62\%$.

Рис.1. Колебательная функция распределения молекул азота в плазме тлеющего разряда в момент времени t = 11 мс при p = 2 Top, T = 500 K, $T_e = 1$ эВ, $N_e = 2 \times 10^{10}$ см⁻³ для первых 8 (а) и 47 (b) колебательных уровней основного состояния: 1 - больцмановское распределение $T_v = 5000$ K, 2 - триноровское распределение $T_v = 5000$ K, 3 - данный расчет, 4 – результаты расчета [12]

3. РЕШЕНИЕ КИНЕТИЧЕСКОГО УРАВНЕНИЯ БОЛЬЦМАНА ДЛЯ ФРЭЭ

Отклонение функции распределения электронов по энергиям от максвелловской становится тем больше, чем выше E/N. Для того, чтобы учесть влияние неравновесной ФРЭЭ на кинетические параметры плазмы в тлеющем разряде, решается кинетическое уравнение Больцмана. В данной работе кинетическое уравнение Больцмана решается в лоренцевом приближении:

$$\frac{E^{2}}{3} \frac{\partial}{\partial u} \left(\frac{u}{N\sigma_{el}} \frac{\partial f}{\partial u} \right) + \frac{2m}{M} \frac{\partial}{\partial u} \left(u^{2} N \sigma_{el} f \right) + \frac{2mkT}{Me} \frac{\partial}{\partial u} \left(u^{2} N \sigma_{el} \frac{\partial f}{\partial u} \right) = C_{0}, \quad (8)$$

$$C_{0} = uf(u)N\sum_{j}\sigma_{j}(u) - \sum_{j}(u+u_{j})f(u+u_{j})N\sigma_{j}(u+u_{j}) + uf(u)N\sum_{j}\sigma_{-j}(u) - \sum_{j}(u-u_{j})f(u-u_{j})N\sigma_{-j}(u-u_{j}),$$
(9)

где $u = mv^2/2e$; *v*, *e*, *m* – скорость, заряд и масса электронов; *M*, *N*, *T* – масса, концентрация и температура молекул азота; *E* – напряженность электрического поля; σ_{el} – сечения упругих столкновений; σ_j , σ_{-j} – сечения процессов возбуждения и девозбуждения колебательных состояний основного электронного терма, а также различных электронных состояний молекулы N₂. ФРЭЭ нормирована условием

$$\int_{0}^{\infty} u^{1/2} f(u) \mathrm{d}u = 1.$$

. .

Для расчета сечений процессов девозбуждения использовалось соотношение Клейна – Росселанда, выражающее принцип детального равновесия для процессов соударения первого и второго рода:

$$(u-u_j)\sigma_{-j}(u-u_j) = \exp(-u_j)u\sigma_j(u), u \ge u_j.$$

Уравнение (8) решалось методом Шермана [17– 18]. В расчете учитывались процессы возбуждения следующих состояний:

$$\begin{split} &N_{2}\left(X^{1}\Sigma_{g}^{+},v\right), v = 0 \div 10; \quad N_{2}\left(A^{3}\Sigma_{u}^{+},v\right), v = 0 \div 4; \\ &N_{2}\left(A^{3}\Sigma_{u}^{+},v\right), v = 5 \div 9; \quad N_{2}\left(B^{3}\Pi_{g}^{+}\right); \\ &N_{2}\left(C^{3}\Pi_{u}^{+}\right); \quad N_{2}\left(W^{3}D_{u}\right); \quad N_{2}\left(A^{3}\Sigma_{u}^{+},v\right), v > 9; \\ &N_{2}\left(B^{3}\Sigma_{u}^{-}\right); \quad N_{2}\left(a^{1}\Sigma_{u}^{-}\right); \quad N_{2}\left(a^{1}\Pi_{g}\right); \quad N_{2}\left(W^{1}D_{u}\right); \\ &N_{2}\left(E^{3}\Sigma_{g}^{+}\right); \quad N_{2}\left(a^{1}\Sigma_{g}^{+}\right). \end{split}$$

Сечения возбуждения колебательных уровней основного терма, а также различных электронных состояний представлены на рис. 2. С увеличением номера колебательного уровня, сечения процессов возбуждения уменьшаются, а их максимумы смещаются в сторону более высоких энергий.

Рис.2. Сечения возбуждения различных колебательных а) и электронных b) состояний азота

На основе полученной ФРЭЭ температура, подвижность и константы скорости и коэффициенты Таунсенда рассчитывались по следующим формулам:

$$T_e = \frac{2}{3} \int_0^\infty u^{3/2} f(u) du , \qquad (10)$$

$$\mu N = -\frac{\gamma}{3} \int_{0}^{\infty} \frac{u}{\sigma_{el}} \frac{\partial f}{\partial u} du, \quad C_{j} = \gamma \int_{0}^{\infty} u \sigma_{j} f_{0} du, \quad \frac{\alpha_{j}}{N} = \frac{C_{j}}{\mu E}$$

Для полученной из решения (8) ФРЭЭ имеет место гораздо более быстрое спадание числа электронов в «хвосте», чем в максвелловском распределении.

В программе Bolsig+ решается уравнение (8), в правой части которого присутствуют также интегралы столкновения для процессов ионизации, что также приводит к уменьшению числа электронов в области высоких энергий. На рис.3 представлены результаты расчета ФРЭЭ из уравнения (8), расчет программой BOLSIG+, где помимо процессов возбуждения молекул учитываются процессы ионизации, а также максвелловская ФРЭЭ с температурой электронов, рассчитанной по формуле (10).

Рис. 3. ФРЭЭ при *E*/*N* =100 Тд (а), и *E*/*N* =190 Тд (b): 1 – решение уравнения (8); 2 – распределение максвелла с *T_e*, рассчитанной из (10); 3 – расчет ФРЭЭ программой Bolsig+

На рис. 4 и 5 также представлены результаты расчета коэффициентов подвижности и коэффициентов Таунсенда из решения кинетического уравнения Больцмана и их сравнение с полуэмпирическими соотношениями из работы [14]: $\frac{\alpha}{p} = A \exp\left(-\frac{B}{E/p}\right), \ \frac{1}{\text{см Тор}},$ где $A = 12 (\text{см Тор})^{-1}, \ B = 342 \frac{B}{\text{см Тор}}.$

$$m_e p = 4.4 \times 10^5$$
, $\frac{\text{Top cm}^2}{\text{B c}}$

Рис. 4. Значения коэффициентов подвижности: 1 –значения из работы [14]; 2 – данный расчет; 3 – данные программы BOLSIG+

Рис. 5. Значения 1-го коэффициента Таунсенда: 1 – значения из работы [14]; 2 – данный расчет; 3 – данные программы BOLSIG+

ЗАКЛЮЧЕНИЕ

Из решения уравнения Больцмана для ФРЭЭ рассчитаны кинетические параметры плазмы в тлеющем разряде (подвижность и температура электронов, коэффициент ионизации), которые используются в диффузионно-дрейфовой модели [15–17]. Полученные в работе значения 1^{го} коэффициента Таунсенда почти на порядок отличаются от полуэмпирических данных. Рассчитаны концентрации колебательно-возбужденных молекул азота. Показано что для плазмы в условиях, характерных для положительного столба тлеющего разряда, доля колебательно-возбужденных молекул составляет более 60 %.

Работа выполнена в рамках программы фундаментальных исследований РАН. Автор благодарит С.Т. Суржикова за руководство работой.

СПИСОК ОБОЗНАЧЕНИЙ

P, C, T – давление, плотность и температура газа;

- ФРЭЭ функция распределения электронов по энергиям *σ* – сечение возбуждения колебательного или элек-
- тронного уровня
- N_e концентрация электронов

Индексы:

m,*n* – номера колебательных уровней молекул азота

СПИСОК ЛИТЕРАТУРЫ

- Энгель А. Ионизованные газы. М.: Издательство физикоматематической литературы, 1959. 332 с.
- Цендин Л.Д. Нелокальная кинетика электронов газоразрядной плазме. // УФН. 2010. Т.180. № 2.
- Гордиец Б.Ф., Осипов А.И., Шелепин Л.А. Кинетические процессы в газах и молекулярные лазеры. М.: Наука, 1980. 512 с.
- 4. IST Lisbon database of cross-sections: http://www.lxcat.laplace.univ-tlse.fr
- Dyatko N.A., Kochetov I.V., Napartovich A.P. Electron energy distribution function in decaying nitrogen plasmas // J. Phys. D: Appl. Phys. 1993. V26.
- Schwartz R.N., Slawsky Z.I., Herzfeld K.F. Calculation of vibrational relaxation times in gases// J. of chem. phys. 1952. V.20 №10.
- 7. Keck J., Carrier G. Diffusion theory of nonequilibrium dissociation and recombination// J. of chem. phys. 1965. V.43. №7.
- Русанов В.В., Силаков В.П., Чеботарев А.В. Кинетические характеристики процесса нагрева молекулярного азота, протекающего во время неравновесного электрического разряда и в послеразрядный период // М.: препринт ИПМ им. М.В.Келдыша РАН. 2004.
- Капителли М. Неравновесная колебательная кинетика.//М.: Мир. 1989. 392с.
- Sherman B. The Difference-Differential Equation of Electron Energy Distribution in a Gas // J.Math. Analysis and Application. 1960. №1, p.342.
- Frost L.S., Phelps A.V. Rotational Excitation and Momentum Transfer Cross Sections for Electrons in H₂ and N₂ from Transport Coefficients //Phys. Rev. 1962. V.127. №5.
- Бодроносов А.В., Верещагин К.А., Гордеев О.А., Смирнов В.В., Шахатов В.А. О возможности локальной невозмущающей диагностики электронного компонента в плазме тлеющего разряда в азоте методом спектроскопии КАРС// ТВТ. 1996. Т.34. №5. с. 666.
- 13. BOLSIG+ 2005 CPAT: http://www.codiciel.fr/plateforme/plasma/bolsig/bolsig.php
- Браун С. Элементарные процессы в плазме газового разряда. М.: Изд-во литературы в области атомной науки и техники, 1961. 323 с.
- Surzhikov S.T. Computational Physics of Electric Discharges in Gas Flows. Walter de Gruyter GmbH, Berlin/Boston. 2013. p. 428.
- Surzhikov S.T., Shang J.S. Two-component Plasma Model for Two-dimensional Glow Discharge in Magnetic Field // J. Of Computational Physics. 2004. V. 199. p. 437.
- Суржиков С.Т. Численный анализ структуры двух типов тлеющих разрядов // Физико-химическая кинетика в газовой динамике. 2008. Т.7. <u>http://www.chemphys.edu.ru/</u> pdf/2008-09-01-029.pdf