ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ УДАРНО-ВОЛНОВЫХ ТЕЧЕНИЙ С ПОМОЩЬЮ МОМЕНТНЫХ УРАВНЕНИЙ

И.Э.Иванов², И.А.Крюков¹, М.Ю.Тимохин²

¹ Институт проблем механики им. А.Ю. Ишлинского Российской академии наук, 119526, Москва, проспект Вернадского 101-1 ² Московский государственный университет им. М.В. Ломоносова, физический факультет, 119992, Москва, Воробьевы горы, 1

Аннотация

В работе рассматривается численный метод решения моментной системы уравнений Грэда [1] и регуляризованной моментной системы [2] в двумерном случае. Предложенный численный метод представляет собой вариант явного метода Годунова повышенного порядка точности [7] с использованием линейного восстановления параметров течения на расчетном слое. Потоки консервативных переменных через грани контрольного объема рассчитываются с помощью приближенного по методу HLL решения задачи Римана. Для аппроксимации системы уравнений по времени используется модифицированный явно-неявный метод Рунге – Кутты 2-го порядка [8]. Даны примеры применения метода для расчета течений с ударными волнами.

NUMERICAL SIMULATION OF SHOCK FLOWS BASED ON MOMENT EQUATIONS

The article is devoted to numerical method of solution of Grad's moment equations [1] and regularized Grad's moment equations [2] for two-dimensional flows. The numerical method is formulated as an extension of explicit high order Godunov method [7] with linear flow parameter reconstruction. Conservative variable fluxes on computational cell edges are evaluated with approximate HLL Riemann solver. Modified explicit/implicit Runge – Kutta method of second order of accuracy is used for time approximation. Some examples of shock flow calculation are presented.

1. ВВЕДЕНИЕ

Все газодинамические течения в соответствии с используемой физической моделью среды условно можно разделить на три класса: течения сплошной среды, течение разреженного газа и переходный режим течения. Это условное разделение можно провести в зависимости от значения числа Кнудсена $Kn = \lambda/L$, где λ – средняя длина свободного пробега, а L – характерный размер системы. Соответственно при Kn < 0.001 среда сплошная (континуальный режим течения), а при Kn > 10 – разреженная (свободно молекулярный режим течения), 0.001 < Kn < 0.1 – перехим течения со скольжением, 0.1 < Kn < 10 – переходный режим.

К настоящему времени достаточно хорошо исследованы системы уравнений, описывающие сплошную среду (уравнения Эйлера и Навье – Стокса) и накоплен обширный опыт численного моделирования на основе этих уравнений. Разреженные газы хорошо моделируются с помощью уравнения Больцмана без интеграла столкновений или же методом прямого моделирования Монте-Карло. Моделирование же переходных процессов вызывает определенные трудности.

С одной стороны моделирование процессов в переходных режимах с помощью уравнений Навье – Стокса (подход сплошной среды) не всегда приводят к физическим результатам. С другой стороны можно было бы производить моделирование с помощью Монте-Карло и уравнения Больцмана с учетом интеграла столкновений (корпускулярный подход). Но в этом случае необходима мощность вычислительной базы на несколько порядков большая, нежели при использовании уравнений Навье – Стокса. Следует отметить, что переходный режим является неотъемлемой частью некоторых практических задач. Так, например, он встречается при входе летательного аппарата в верхние слои атмосферы, где достаточно велика средняя длина свободного пробега. С другой стороны прикладное значение этот режим имеет и при уменьшении характерного размера среды. Это актуально для течений в микроканалах и микросоплах, где мала средняя длина свободного пробега, но при этом характерный размер вполне сравним с ней.

С середины 20-го столетия активно развивается подход, при котором с помощью уравнения Больцмана выводится и решается система моментных уравнений (система законов сохранения сплошной среды), которая записывается относительно макропараметров и которая определенным образом моделирует поведение разреженного газа в переходной области [1-4]. В общем случае система моментных уравнений является бесконечномерной. Поэтому для получения конечной системы оставляют только определенное количество уравнений, а остальные отбрасываются. Входящие в полученную систему моменты высшего порядка выражаются через оставленные моменты с помощью некоторых замыкающих соотношений. Такой подход впервые реализован Грэдом [1], где с использованием простейших замыкающих соотношений получена система из 13 уравнений. В последнее время эта система была модифицирована рядом авторов [2-4] с целью преодоления ряда недостатков, присущих системе Грэда. В результате предложена "регуляризированная система Грэда" - система R13.

В настоящей работе для решения систем уравнений Грэда [1] и R13 [2] описывается численный метод, который представляет собой вариант метода Годунова повышенного порядка точности [7] с использованием линейного восстановления параметров течения на расчетном слое. Потоки консервативных переменных через грани контрольного объема рассчитываются с помощью приближенного по методу HLL решения задачи Римана. Для аппроксимации системы уравнений по времени используется модифицированный явно-неявный метод Рунге – Кутты 2-го порядка.

Приводятся два примера использования описанно-го метода.

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Тринадцати моментная система уравнений Грэда [1] может быть записана в следующем виде:

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \frac{\partial \rho \upsilon_k}{\partial x_k} = 0, \\ \rho \frac{\partial \upsilon_i}{\partial t} &+ \rho \upsilon_k \frac{\partial \upsilon_i}{\partial x_k} + \frac{\partial p}{\partial x_i} + \frac{\partial \sigma_{ik}}{\partial x_k} = 0, \\ \frac{3}{2} \rho \frac{\partial \frac{k}{m}T}{\partial t} &+ \frac{3}{2} \rho \upsilon_k \frac{\partial \frac{k}{m}T}{\partial x_k} + \frac{\partial q_k}{\partial x_k} + p \frac{\partial \upsilon_k}{\partial x_k} + \sigma_{ij} \frac{\partial \upsilon_i}{\partial x_j} = 0, \\ \frac{\partial \sigma_{ij}}{\partial t} &+ \frac{\partial \sigma_{ij} \upsilon_k}{\partial x_k} + \frac{4}{5} \frac{\partial q_{\langle i}}{\partial x_{j \rangle}} + 2p \frac{\partial \upsilon_{\langle i}}{\partial x_{j \rangle}} + 2\sigma_{k \langle i} \frac{\partial \upsilon_{j \rangle}}{\partial x_k} = -\frac{\sigma_{ij}}{\tau}, \\ \frac{\partial q_i}{\partial t} &+ \frac{\partial q_i \upsilon_k}{\partial x_k} + \frac{5}{2} p \frac{\partial \frac{k}{m}T}{\partial x_i} + \frac{5}{2} \sigma_{ik} \frac{\partial \frac{k}{m}T}{\partial x_k} + \frac{k}{m} T \frac{\partial \sigma_{ik}}{\partial x_k} \\ &- \sigma_{ik} \frac{k}{m} T \frac{\partial \rho}{\partial x_k} - \frac{\sigma_{ij}}{\rho} \frac{\partial \sigma_{jk}}{\partial x_k} + \frac{7}{5} q_k \frac{\partial \upsilon_i}{\partial x_k} + \frac{2}{5} q_k \frac{\partial \upsilon_k}{\partial x_i} \\ &+ \frac{2}{5} q_i \frac{\partial \upsilon_k}{\partial x_k} = -\frac{2}{3} \frac{q_i}{\tau}, \end{split}$$

где плотность, скорость, давление, тензор напряжений и тепловой поток в трехмерном случае составляют тринадцать переменных. Четырнадцатая переменная, температура, связана с остальными с помощью уравнения состояния.

Хорошо известно, что система Грэда имеет ряд недостатков. При рассмотрении ударно-волновых течений главным из них является, пожалуй, ограничение на число Маха. При описании ударных волн с числом Маха, большим, чем 1.65, система уравнений Грэда дает нефизичные результаты.

В 2003 году Struchtrup и Torrilhon предложили регуляризацию тринадцатимоментной системы Грэда [2]. Вывод новой моментной системы основан на разделении переменных на медленноменяющиеся (тензор напряжений и тепловой поток) и быстроменяющиеся (остальные переменные). На основе этого предположения осуществляется разложение по малому параметру, в результате чего появляются новые члены в уравнениях для тензора напряжений и теплового потока:

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \frac{\partial \rho \upsilon_k}{\partial x_k} &= 0, \\ \rho \frac{\partial \upsilon_i}{\partial t} + \rho \upsilon_k \frac{\partial \upsilon_i}{\partial x_k} + \frac{\partial p}{\partial x_i} + \frac{\partial \sigma_{ik}}{\partial x_k} &= 0, \\ \frac{3}{2} \rho \frac{\partial \frac{k}{m}T}{\partial t} + \frac{3}{2} \rho \upsilon_k \frac{\partial \frac{k}{m}T}{\partial x_k} + \frac{\partial q_k}{\partial x_k} + p \frac{\partial \upsilon_k}{\partial x_k} + \sigma_{ij} \frac{\partial \upsilon_i}{\partial x_j} &= 0, \end{aligned}$$

$$\begin{split} \frac{\partial \sigma_{ij}}{\partial t} + & \frac{\partial \sigma_{ij}\upsilon_k}{\partial x_k} + \frac{4}{5}\frac{\partial q_{\langle i}}{\partial x_{j \rangle}} + 2p\frac{\partial \upsilon_{\langle i}}{\partial x_{j \rangle}} + 2\sigma_{k\langle i}\frac{\partial \upsilon_{j \rangle}}{\partial x_k} + \frac{\partial m_{ijk}}{\partial x_k} = -\frac{\sigma_{ij}}{\tau}, \\ \frac{\partial q_i}{\partial t} + & \frac{\partial q_i\upsilon_k}{\partial x_k} + \frac{5}{2}p\frac{\partial \frac{k}{m}T}{\partial x_i} + \frac{5}{2}\sigma_{ik}\frac{\partial \frac{k}{m}T}{\partial x_k} + \frac{k}{m}T\frac{\partial \sigma_{ik}}{\partial x_k} \\ & -\sigma_{ik}\frac{k}{m}T\frac{\partial \rho}{\partial x_k} - \frac{\sigma_{ij}}{\rho}\frac{\partial \sigma_{jk}}{\partial x_k} + \frac{7}{5}q_k\frac{\partial \upsilon_i}{\partial x_k} + \frac{2}{5}q_k\frac{\partial \upsilon_k}{\partial x_i} \\ & + \frac{2}{5}q_i\frac{\partial \upsilon_k}{\partial x_k} + \frac{1}{2}\frac{\partial R_{ik}}{\partial x_k} + \frac{1}{6}\frac{\partial \Delta}{\partial x_i} + m_{ijk}\frac{\partial \upsilon_j}{\partial x_k} = -\frac{2}{3}\frac{q_i}{\tau}, \end{split}$$

где новые члены (по сравнению с системой Грэда):

$$\begin{split} m_{ijk} &= -2\tau \Bigg[\frac{k}{m} T \frac{\partial \sigma_{\langle ij}}{\partial x_k \rangle} - \frac{k}{m} T \sigma_{\langle ij} \frac{\partial \ln \rho}{\partial x_k \rangle} + \frac{4}{5} q_{\langle i} \frac{\partial \upsilon_j}{\partial x_k \rangle} \\ &- \frac{\partial \sigma_{\langle ij}}{\zeta} \frac{\partial \sigma_{k \rangle l}}{\partial x_l} \Bigg], \\ R_{ij} &= -\frac{24}{5} \tau \Bigg[\frac{k}{m} T \frac{\partial q_{\langle i}}{\partial x_j \rangle} + \frac{k}{m} q_{\langle i} \frac{\partial T}{\partial x_j \rangle} - \frac{k}{m} T q_{\langle i} \frac{\partial \ln \rho}{\partial x_j \rangle} \\ &- \frac{1}{\rho} q_{\langle i} \frac{\partial \sigma_{j \rangle k}}{\partial x_k} + \frac{5}{7} \frac{k}{m} T \Bigg(\sigma_{k \langle i} \frac{\partial \upsilon_j \rangle}{\partial x_k} + \sigma_{ki} \frac{\partial \upsilon_k}{\partial x_j} \\ &- \frac{2}{3} \sigma_{ij} \frac{\partial \upsilon_k}{\partial x_k} \Bigg) - \frac{5}{6} \frac{\sigma_{ij}}{\rho} \frac{\partial q_k}{\partial x_k} - \frac{5}{6} \frac{\sigma_{ij}}{\rho} \sigma_{kl} \frac{\partial \upsilon_k}{\partial x_l} \Bigg], \\ \Delta &= -12\tau \Bigg[\frac{k}{m} T \frac{\partial q_k}{\partial x_k} + \frac{5}{2} \frac{k}{m} q_k \frac{\partial T}{\partial x_k} - \frac{k}{m} T q_k \frac{\partial \ln \rho}{\partial x_k} \\ &+ \frac{1}{\rho} q_j \frac{\partial \sigma_{jk}}{\partial x_k} + \frac{k}{m} T \sigma_{ij} \frac{\partial \upsilon_i}{\partial x_j} \Bigg]. \end{split}$$

Несколько позже, в 2006 году, Torrilhon предложил дивергентную форму записи уравнений системы R13 для двухмерного случая [3]. Для этого автор ввел вектор примитивных переменных, состоящий из девяти переменных:

$$W = \left\{ \rho, \upsilon_x, \upsilon_y, p, p_x, p_y, \sigma, q_x, q_y \right\},\$$

1

где $p = (p_x + p_y + p_z)/3$, и вектор консервативных переменных;

$$U(W) = \begin{pmatrix} \rho \\ \rho \upsilon_x \\ \rho \upsilon_y \\ \rho \upsilon^2 + 3p \\ \rho \upsilon_x^2 + p_x \\ \rho \upsilon_y^2 + p_y \\ \rho \upsilon_x \upsilon_y + \sigma \\ \rho \upsilon_x \upsilon^2 + 3p \upsilon_x + 2(p_x \upsilon_x + \sigma \upsilon_y) + 2q_x \\ \rho \upsilon_y \upsilon^2 + 3p \upsilon_y + 2(p_y \upsilon_y + \sigma \upsilon_x) + 2q_y \end{pmatrix}$$

Это позволяет записать систему в общем виде следующим образом:

$$\frac{\partial U(W)}{\partial t} + \operatorname{div} F(W) = P(W), \qquad (1)$$

где $F(W) = (F_x(W), F_y(W)).$

/

Вектор потоков по х-направлению

$$\begin{pmatrix} \rho \upsilon_{x} \\ \rho \upsilon_{x}^{2} + p_{x} \\ \rho \upsilon_{x} \upsilon_{y} + \sigma \\ \rho \upsilon_{x} \upsilon_{y}^{2} + 2(p_{x}\upsilon_{x} + \sigma\upsilon_{y}) + 3p\upsilon_{x} + 2q_{x} \\ \rho \upsilon_{x}^{3} + 3p_{x}\upsilon_{x} + \frac{6}{5}q_{x} + m_{xxx} \\ \rho \upsilon_{x}^{3} + 3p_{x}\upsilon_{x} + \frac{6}{5}q_{x} + m_{xxx} \\ \rho \upsilon_{x}\upsilon_{y}^{2} + p_{y}\upsilon_{x} + 2\sigma\upsilon_{y} + \frac{2}{5}q_{x} + m_{xyy} \\ \rho \upsilon_{y}\upsilon_{x}^{2} + p_{x}\upsilon_{y} + 2\sigma\upsilon_{x} + \frac{2}{5}q_{y} + m_{xxy} \\ (\rho \upsilon^{2} + 3p + 4p_{x})\upsilon_{x}^{2} + (7\theta + \upsilon^{2})p_{x} + 4\sigma\upsilon_{x}\upsilon_{y} \\ + \frac{32}{5}q_{x}\upsilon_{x} + \frac{4}{5}q_{y}\upsilon_{y} - 2\theta p + \hat{R}_{xx} \\ (\rho \upsilon^{2} + 3p + 2(p_{x} + p_{y}))\upsilon_{x}\upsilon_{y} + (7\theta + 3\upsilon^{2})\sigma \\ + \frac{14}{5}(q_{x}\upsilon_{y} + q_{y}\upsilon_{x}) + \hat{R}_{xy} \end{pmatrix}$$

и по у-направлению:

$$\begin{pmatrix} \rho \upsilon_{y} \\ \rho \upsilon_{x} \upsilon_{y} + \sigma \\ \rho \upsilon_{y}^{2} + p_{y} \\ \rho \upsilon_{y} \upsilon^{2} + 2(p_{y} \upsilon_{y} + \sigma \upsilon_{x}) + 3p \upsilon_{y} + 2q_{y} \\ \rho \upsilon_{y} \upsilon^{2}_{x} + p_{x} \upsilon_{y} + 2\sigma \upsilon_{x} + \frac{2}{5}q_{y} + m_{yxx} \\ \rho \upsilon_{y}^{3} + 3p_{y} \upsilon_{y} + \frac{6}{5}q_{y} + m_{yyy} \\ \rho \upsilon_{x} \upsilon_{y}^{2} + p_{y} \upsilon_{x} + 2\sigma \upsilon_{y} + \frac{2}{5}q_{x} + m_{xyy} \\ (\rho \upsilon^{2} + 3p + 2(p_{x} + p_{y}))\upsilon_{x}\upsilon_{y} + (7\theta + 3\upsilon^{2})\sigma \\ + \frac{14}{5}(q_{x}\upsilon_{y} + q_{y}\upsilon_{x}) + \hat{R}_{xy} \\ (\rho \upsilon^{2} + 3p + 4p_{y})\upsilon_{y}^{2} + (7\theta + \upsilon^{2})p_{y} + 4\sigma \upsilon_{x}\upsilon_{y} \\ + \frac{32}{5}q_{y}\upsilon_{y} + \frac{4}{5}q_{x}\upsilon_{x} - 2\theta p + \hat{R}_{yy} \end{pmatrix}$$

где $\hat{R}_{ij} = m_{ijk}\upsilon_k + R_{ik}$, а m_{ijk} и R_{ik} для двухмерного случая имеют вид

$$\begin{pmatrix} m_{xxx} \\ m_{xxy} \\ m_{xyy} \\ m_{yyy} \end{pmatrix} = -2 \frac{\theta}{\nu} \begin{pmatrix} \frac{3}{5} (\partial_x p_x - \partial_x p) - \frac{2}{5} \partial_y \sigma \\ \frac{1}{3} \partial_y p_x - \frac{1}{5} \partial_y p + \frac{8}{15} \partial_x \sigma - \frac{2}{15} \partial_y p_y \\ \frac{1}{3} \partial_x p_y - \frac{1}{5} \partial_x p + \frac{8}{15} \partial_y \sigma - \frac{2}{15} \partial_x p_x \\ \frac{3}{5} (\partial_y p_y - \partial_y p) - \frac{2}{5} \partial_x \sigma \end{pmatrix},$$

$$\begin{pmatrix} R_{xx} \\ R_{xy} \\ R_{yy} \end{pmatrix} = -4 \frac{\theta}{\nu} \begin{pmatrix} \frac{5}{3} \partial_x q_x + \frac{2}{3} \partial_y q_y \\ \frac{1}{2} (\partial_x q_y + \partial_y q_x) \\ \frac{5}{3} \partial_y q_y + \frac{2}{3} \partial_x q_x \end{pmatrix}.$$

Вектор релаксационных членов

$$P(W) = \begin{pmatrix} 0 \in \mathbb{R}^{4} \\ -\nu(p_{x} - p) \\ -\nu(p_{y} - p) \\ -\nu\sigma \\ -2\nu(\sigma\upsilon_{y} + (p_{x} - p)\upsilon_{x} + \frac{2}{3}q_{x}) \\ -2\nu(\sigma\upsilon_{x} + (p_{y} - p)\upsilon_{y} + \frac{2}{3}q_{y}) \end{pmatrix},$$

где $\nu = 1/\tau$.

3. ЧИСЛЕННЫЙ МЕТОД

Для аппроксимации системы (1) введем в расчетной области двумерную регулярную сетку, состоящую из выпуклых четырехугольных ячеек. После интергрирования системы (1) по ячейке расчетной сетки аппроксимация члена $\operatorname{div}(F)$ будет иметь вид

$$\operatorname{div}(F)\Big|_{ij} \approx \frac{1}{A_{ij}} \Big(\tilde{F}_{i+1/2\,j} + \tilde{F}_{ij+1/2} + \tilde{F}_{i-1/2\,j} + \tilde{F}_{ij-1/2} \Big) \,,$$

где $\tilde{F}_{i+1/2\,j}$ численный поток через грань

$$\tilde{F}_{i+1/2j} = \left(\Delta y F_x - \Delta x F_y\right)_{i+1/2j}$$

Для аппроксимации гиперболической части потока $\tilde{F}_{i+1/2j}$ (которая соответствуют системе уравнений Грэда) используется приближенный HLL метод решения задачи Римана [3]:

$$\tilde{F}^{G13} = \frac{b_R}{\Delta b} \tilde{F}_L^{G13} - \frac{b_L}{\Delta b} \tilde{F}_R^{G13} + \frac{b_R b_L}{\Delta b} (U_R - U_L),$$

где индексы L и R соответствуют параметрам «слева» и «справа» от грани. Величины b_L и b_R определяются следующим образом

$$b_L = \min(0, a_L), \quad b_R = \max(0, a_R), \quad \Delta b = b_R - b_L.$$

Максимальные скорости распространения возмущений a_L и a_R задаются в соответствии с работой [3]

$$a_L = v_{n,L} - c_L^{\max}, \quad a_R = v_{n,R} + c_R^{\max}$$

где *с*^{тах} задается эмпирической формулой

$$\frac{c^{\max}}{\theta^{1/2}} = c^{(p)}(P_2) + \left[c^{(p)}(P_1) - c^{(p)}(P_2)\right] |\vec{n} \cdot \vec{n}| + c^{(q)} \left(\frac{\|\vec{q}\|}{\rho \theta^{3/2}}\right) \frac{\vec{n} \cdot \vec{q}}{\|\vec{q}\|},$$

в которой $P_{1,2}$ определяются как собственные значения матрицы

$$\begin{pmatrix} p_x/p & \sigma/p \\ \sigma/p & p_y/p \end{pmatrix},$$

а \vec{n} как собственный вектор, соответствующий P_1 . В выражение для c^{\max} входят две эмпирические функции:

$$c^{(p)}(P) = c_{\max}^{(0)} / \theta^{1/2} - 0.9 + P - 0.1P^2,$$

$$c^{(q)}(Q) = \left[\left(c_{\max}^{(0)} / \theta^{1/2} \right)^4 + 25Q \right]^{1/4} - c_{\max}^{(0)} / \theta^{1/2}.$$

Второй порядок точности по пространству на гладких решениях достигается использованием существенно двумерных процедур восстановления [7] примитивных переменных внутри каждой расчетной ячейки.

Для дискретизации «эллиптической» части потоков используется обычная центрально-разностная аппроксимация.

Для аппроксимации по времени используется модифицированный явно-неявный метод Рунге-Кутта второго порядка [8]

$$U^{(1)} = U^{n} - \Delta t \operatorname{div}(F^{n}) + \Delta t P(U^{(1)}),$$
$$U^{n+1} = \frac{1}{2} (U^{n} + U^{(1)}) + \frac{\Delta t}{2} \operatorname{div}(F^{(1)}) + \frac{\Delta t}{2} P(U^{n+1}),$$

т.е. член с div(F) аппроксимируется явно, а релаксационный член – неявно. Поэтому в каждой ячейке на каждой стадии метода приходится решать систему нелинейных уравнений. Это не слишком сильно замедляет расчет, т.к. структура релаксационных членов позволяет легко разрешить эту нелинейную систему.

4. ТЕСТИРОВАНИЕ АЛГОРИТМА. СРАВНЕНИЕ РЕЗУЛЬТАТОВ

С помощью разработанного численного метода в данной работе исследуется возможность моделирования ударно-волновых процессов в высокоскоростных газовых потоках при переходных режимах течения с использованием различных систем моментных уравнений.

В качестве первого тестового примера рассматривается задача о структуре стационарной ударной волны при переходных и больших числах Кнудсена. Эта задача интенсивно изучается многими авторами с использованием различных подходов [4–6]. Известно, что уравнения Навье – Стокса позволяют получить структуру стационарной ударной волны только в очень узком диапазоне параметров. Система Грэда [1] тоже не позволяет получить правильную структуру фронта для чисел Маха больших 1.5. В качестве начальных условий задаются параметры слева и справа от ударной волны, получаемые из соотношений Ренкина – Гюгонио.

Число Кнудсена было взято равным единице. Расчет производился для системы Грэда и для R13 при числах Маха, равных 1.5, 2.0, 3.0 и 4.0. Область разбивалась на 1000 ячеек. Результаты расчета показаны на рис. 1. Сплошной линией показаны результаты, полученные с использование системы Грэда, а пунктирной линией – с использованием R13. Для сравнения даны результаты решения задачи методом Монте-Карло (показаны кружочками).

Рис. 1. Структура стационарной ударной волны в зависимости от числа Маха ударной волны

Из результатов расчетов, приведенных на рис.1, следует, что в отличие от системы Грэда с помощью системы уравнений R13 структура ударной волны вос-

производится достаточно хорошо во всем рассматриваемом диапазоне чисел Маха.

В качестве второго примера рассмотрим решение двумерной задачи о взаимодействии ударной волны с пузырем более плотного газа. Расчетная область имеет размеры 5×2 . В начальный момент времени в x = 1.0задается ударная волна с числом Маха M = 2.0. Профиль ее определяется из решения соответствующей одномерной задачи. В точке с координатами (2.5, 1.0) находится центр пузыря. Распределение плотности вокруг него имеет следующий вид:

$$\rho = 1 + 1.5 \exp\left[-16\left(x^2 + y^2\right)\right].$$

Ударная волна начинает двигаться слева направо. Расчет производился для чисел Кнудсена Kn = 0.01 и Kn = 0.05 на расчетной сетке 500×200 ячеек. На рис. 2 показаны изолинии температуры и плотности в момент времени t = 1.0 для числа Кнудсена Kn = 0.01.

Рис. 2. Изолинии плотности и температуры при t = 1.0 для Kn = 0.01

На рис. 3 и 4 показаны распределения температуры и плотности по х в среднем сечении по у в момент времени t=1.0 для Kn=0.01 и Kn=0.05.

5. ЗАКЛЮЧЕНИЕ

Представлены численный метод и результаты численного моделирования для регуляризованных моментных уравнений в двумерном случае. Предложенный численный метод представляет собой вариант явного метода Годунова повышенного порядка точности с использованием линейного восстановления параметров течения на расчетном слое. Потоки консервативных переменных через грани контрольного объема рассчитываются с помощью приближенного по методу HLL решения задачи Римана. Для аппроксимации системы уравнений по времени используется модифицированный явно-неявный метод Рунге-Кутты 2-го порядка.

Приведены два примера применения метода для расчета течений с ударными волнами: задача о структуре стационарной ударной волны и двумерная задача о взаимодействии ударной волны с пузырем более плотного газа.

В дальнейшем предполагается реализовать граничные условия на твердых поверхностях и усовершенствовать аппроксимацию «эллиптической» части потоков с целью уменьшить ограничение на шаг по времени.

Рис. 3. Профили плотности и температуры вдоль линии y = 1.0 для Kn = 0.01

Рис. 4. Профили плотности и температуры вдоль линии y = 1.0 для Kn = 0.05

Работа выполнена при финансовой поддержке Российского Фонда Фундаментальных Исследований (код проекта 10-01-00711).

СПИСОК ОБОЗНАЧЕНИЙ

- ρ плотность;
- σ_{ij} тензор напряжений;
- θ температура, $\theta = p/\rho$;
- *А*_{*ij*} площадь ячейки;
- p давление, H/M^2 ;
- q_i плотность теплового потока; Bт/м²;

 v_i — составляющая скорости вдоль *i*-й оси, м/с. Индексы:

- *i* порядковый номер орта системы координат;
- *k* номер экспериментальной точки.

СПИСОК ЛИТЕРАТУРЫ

- 1. *H. Grad*, On the kinetic theory of rarefied gases // Comm. Pure Appl. Math., 1949, 2, 331–407.
- 2. *H. Struchtrup, M. Torrilhon*, Regularization of Grad's 13moment-equations: Derivation and linear analysis // Phys. Fluids, 2003, 15, 2668–2680.
- 3. *M. Torrilhon*, Two-dimensional bulk microflow simulations based on regularized Grad's 13-moment equations // Multiscale Model. Simul., 2006, 5, 3, 695–728.
- 4. *M. Torrilhon and H. Struchtrup*, Regularized 13-moment equations: shock structure calculations and comparison to Burnett models // J. Fluid Mech., 2004, 513, 171–198.

- 5. *K. Xu*, Regularization of the Chapman-Enskog expansion and its description of shock structure // Phys. Fluids, 2002, 14, L17–L20.
- T.G. Elizarova, I.A. Shirokov, S. Montero, Numerical simulation of shock-wave structure for argon and helium // Physics of Fluids, 2005, 17, 068101.
- Иванов И.Э., Крюков И.А. Квазимонотонный метод повышенного порядка точности для расчета внутренних и струйных течений невязкого газа // Математическое моделирование, 1996, 8, 6, 47–55.
- 8. Глушко Г.С., Иванов И.Э., Крюков И.А. Метод расчета турбулентных сверхзвуковых течений // Математическое моделирование, 2009, 21, 12, 103–121.